Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382137175> ?p ?o ?g. }
- W4382137175 endingPage "2811" @default.
- W4382137175 startingPage "2811" @default.
- W4382137175 abstract "Time series data analysis and forecasting have recently received considerable attention, supporting new technology development trends for predicting load fluctuations or uncertainty conditions in many domains. In particular, when the load is small, such as a building, the effect of load fluctuation on the total load is relatively large compared to the power system, except for specific factors, and the amount is very difficult to quantify. Recently, accurate power consumption prediction has become an important issue in the Internet of Things (IoT) environment. In this paper, a traditional time series prediction method was applied and a new model and scientific approach were used for power prediction in IoT and big data environments. To this end, to obtain data used in real life, the power consumption of commercial refrigerators was continuously collected at 15 min intervals, and prediction results were obtained by applying time series prediction methods (e.g., RNN, LSTM, and GRU). At this time, the seasonality and periodicity of electricity use were also analyzed. In this paper, we propose a method to improve the performance of the model by classifying power consumption into three classes: weekday, Saturday, and Sunday. Finally, we propose a method for predicting power consumption using a new type of ensemble model combined with three time series methods. Experimental results confirmed the accuracy of RNN (i.e., 96.1%), LSTM (i.e., 96.9%), and GRU (i.e., 96.4%). In addition, it was confirmed that the ensemble model combining the three time series models showed 98.43% accuracy in predicting power consumption. Through these experiments and approaches, scientific achievements for time series data analysis through real data were accomplished, which provided an opportunity to once again identify the need for continuous real-time power consumption monitoring." @default.
- W4382137175 created "2023-06-27" @default.
- W4382137175 creator A5046293721 @default.
- W4382137175 creator A5052993718 @default.
- W4382137175 creator A5071441974 @default.
- W4382137175 date "2023-06-25" @default.
- W4382137175 modified "2023-09-30" @default.
- W4382137175 title "Time Series Prediction Methodology and Ensemble Model Using Real-World Data" @default.
- W4382137175 cites W1569332024 @default.
- W4382137175 cites W1720804347 @default.
- W4382137175 cites W1873571028 @default.
- W4382137175 cites W1968605868 @default.
- W4382137175 cites W1973237289 @default.
- W4382137175 cites W2014392450 @default.
- W4382137175 cites W2049478115 @default.
- W4382137175 cites W2051301990 @default.
- W4382137175 cites W2076587863 @default.
- W4382137175 cites W2118022153 @default.
- W4382137175 cites W2120540932 @default.
- W4382137175 cites W2334001404 @default.
- W4382137175 cites W2521054263 @default.
- W4382137175 cites W2526782608 @default.
- W4382137175 cites W2570991997 @default.
- W4382137175 cites W2573526403 @default.
- W4382137175 cites W2730581894 @default.
- W4382137175 cites W2944851425 @default.
- W4382137175 cites W3104010555 @default.
- W4382137175 cites W4233104126 @default.
- W4382137175 cites W4280550128 @default.
- W4382137175 cites W4311545427 @default.
- W4382137175 cites W588468042 @default.
- W4382137175 doi "https://doi.org/10.3390/electronics12132811" @default.
- W4382137175 hasPublicationYear "2023" @default.
- W4382137175 type Work @default.
- W4382137175 citedByCount "1" @default.
- W4382137175 countsByYear W43821371752023 @default.
- W4382137175 crossrefType "journal-article" @default.
- W4382137175 hasAuthorship W4382137175A5046293721 @default.
- W4382137175 hasAuthorship W4382137175A5052993718 @default.
- W4382137175 hasAuthorship W4382137175A5071441974 @default.
- W4382137175 hasBestOaLocation W43821371751 @default.
- W4382137175 hasConcept C111472728 @default.
- W4382137175 hasConcept C119857082 @default.
- W4382137175 hasConcept C119898033 @default.
- W4382137175 hasConcept C121332964 @default.
- W4382137175 hasConcept C124101348 @default.
- W4382137175 hasConcept C138885662 @default.
- W4382137175 hasConcept C143724316 @default.
- W4382137175 hasConcept C144024400 @default.
- W4382137175 hasConcept C151406439 @default.
- W4382137175 hasConcept C151730666 @default.
- W4382137175 hasConcept C154945302 @default.
- W4382137175 hasConcept C163258240 @default.
- W4382137175 hasConcept C2778136018 @default.
- W4382137175 hasConcept C2984118289 @default.
- W4382137175 hasConcept C30772137 @default.
- W4382137175 hasConcept C36289849 @default.
- W4382137175 hasConcept C41008148 @default.
- W4382137175 hasConcept C45804977 @default.
- W4382137175 hasConcept C62520636 @default.
- W4382137175 hasConcept C75684735 @default.
- W4382137175 hasConcept C86803240 @default.
- W4382137175 hasConceptScore W4382137175C111472728 @default.
- W4382137175 hasConceptScore W4382137175C119857082 @default.
- W4382137175 hasConceptScore W4382137175C119898033 @default.
- W4382137175 hasConceptScore W4382137175C121332964 @default.
- W4382137175 hasConceptScore W4382137175C124101348 @default.
- W4382137175 hasConceptScore W4382137175C138885662 @default.
- W4382137175 hasConceptScore W4382137175C143724316 @default.
- W4382137175 hasConceptScore W4382137175C144024400 @default.
- W4382137175 hasConceptScore W4382137175C151406439 @default.
- W4382137175 hasConceptScore W4382137175C151730666 @default.
- W4382137175 hasConceptScore W4382137175C154945302 @default.
- W4382137175 hasConceptScore W4382137175C163258240 @default.
- W4382137175 hasConceptScore W4382137175C2778136018 @default.
- W4382137175 hasConceptScore W4382137175C2984118289 @default.
- W4382137175 hasConceptScore W4382137175C30772137 @default.
- W4382137175 hasConceptScore W4382137175C36289849 @default.
- W4382137175 hasConceptScore W4382137175C41008148 @default.
- W4382137175 hasConceptScore W4382137175C45804977 @default.
- W4382137175 hasConceptScore W4382137175C62520636 @default.
- W4382137175 hasConceptScore W4382137175C75684735 @default.
- W4382137175 hasConceptScore W4382137175C86803240 @default.
- W4382137175 hasFunder F4320321367 @default.
- W4382137175 hasIssue "13" @default.
- W4382137175 hasLocation W43821371751 @default.
- W4382137175 hasOpenAccess W4382137175 @default.
- W4382137175 hasPrimaryLocation W43821371751 @default.
- W4382137175 hasRelatedWork W2884834684 @default.
- W4382137175 hasRelatedWork W2906377796 @default.
- W4382137175 hasRelatedWork W3014300295 @default.
- W4382137175 hasRelatedWork W3096310447 @default.
- W4382137175 hasRelatedWork W4241214917 @default.
- W4382137175 hasRelatedWork W4285741730 @default.
- W4382137175 hasRelatedWork W4300978579 @default.
- W4382137175 hasRelatedWork W4309045103 @default.
- W4382137175 hasRelatedWork W4318612353 @default.
- W4382137175 hasRelatedWork W4382137175 @default.