Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382137218> ?p ?o ?g. }
- W4382137218 abstract "Abstract In this work, we study the role of the vanishing complexity factor in generating self-gravitating compact objects under gravitational decoupling technique in f ( Q )-gravity theory. To tackle the problem, the gravitationally decoupled action for modified f ( Q ) gravity has been adopted in the form $${mathscr {S}}={{mathscr {S}}_{Q}}+{{mathscr {S}}^{*}_{theta }}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>Q</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mi>θ</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:math> , where $${mathscr {S}}_Q$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>Q</mml:mi> </mml:msub> </mml:math> denotes the Lagrangian density of the fields which appears in the f ( Q ) theory while $${mathscr {S}}^{*}_{theta } (=alpha {mathscr {S}}_{theta }$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mi>θ</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>θ</mml:mi> </mml:msub> </mml:mrow> </mml:math> , where $$alpha $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>α</mml:mi> </mml:math> is just a coupling parameter which controls the deformation) describes the Lagrangian density for a new kind of gravitational sector which has not been included in f ( Q ) gravity. After that, we developed an important relation between gravitational potentials via a systematic approach (Contreras and Stuchlik in Eur Phys J C 82:706, 2022) using the vanishing complexity factor condition in the context of f ( Q ) theory. We have used the Buchdahl model along with the mimic-to-density constraints approach for generating the complexity-free anisotropic solution. The qualitative physical analysis has been done along with the mass-radius relation for different compact objects via $$M-R$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>-</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> curves to validate our solution. It is noticed that the coupling constant $$beta _1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> has a definite impact on constraining the mass and radii of the object that are shown in $$M-R$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>-</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> curves. The obtained results show that the compactness of the objects can be controlled by the coupling parameters." @default.
- W4382137218 created "2023-06-27" @default.
- W4382137218 creator A5022535838 @default.
- W4382137218 creator A5051675421 @default.
- W4382137218 creator A5055814363 @default.
- W4382137218 creator A5064265813 @default.
- W4382137218 creator A5067823193 @default.
- W4382137218 creator A5078799639 @default.
- W4382137218 date "2023-06-26" @default.
- W4382137218 modified "2023-10-14" @default.
- W4382137218 title "Role of vanishing complexity factor in generating spherically symmetric gravitationally decoupled solution for self-gravitating compact object" @default.
- W4382137218 cites W1562625608 @default.
- W4382137218 cites W1853767801 @default.
- W4382137218 cites W1958232190 @default.
- W4382137218 cites W1991407092 @default.
- W4382137218 cites W1996290395 @default.
- W4382137218 cites W2008279214 @default.
- W4382137218 cites W2010142141 @default.
- W4382137218 cites W2012139916 @default.
- W4382137218 cites W2017829152 @default.
- W4382137218 cites W2021000304 @default.
- W4382137218 cites W2021599554 @default.
- W4382137218 cites W2027627752 @default.
- W4382137218 cites W2036662279 @default.
- W4382137218 cites W2037214676 @default.
- W4382137218 cites W2048540625 @default.
- W4382137218 cites W2056173066 @default.
- W4382137218 cites W2059243044 @default.
- W4382137218 cites W2065805883 @default.
- W4382137218 cites W2071775418 @default.
- W4382137218 cites W2073603601 @default.
- W4382137218 cites W2073832139 @default.
- W4382137218 cites W2075884494 @default.
- W4382137218 cites W2081135636 @default.
- W4382137218 cites W2092350553 @default.
- W4382137218 cites W2094740723 @default.
- W4382137218 cites W2096475520 @default.
- W4382137218 cites W2096699295 @default.
- W4382137218 cites W2096916109 @default.
- W4382137218 cites W2101862267 @default.
- W4382137218 cites W2102716046 @default.
- W4382137218 cites W2109243620 @default.
- W4382137218 cites W2113869105 @default.
- W4382137218 cites W2115593461 @default.
- W4382137218 cites W2115623495 @default.
- W4382137218 cites W2118265220 @default.
- W4382137218 cites W2125048434 @default.
- W4382137218 cites W2141936689 @default.
- W4382137218 cites W2145385926 @default.
- W4382137218 cites W2154422137 @default.
- W4382137218 cites W2154748230 @default.
- W4382137218 cites W2158917220 @default.
- W4382137218 cites W2224840051 @default.
- W4382137218 cites W2253364474 @default.
- W4382137218 cites W2335072245 @default.
- W4382137218 cites W2461428575 @default.
- W4382137218 cites W2559839898 @default.
- W4382137218 cites W2591817099 @default.
- W4382137218 cites W2606047231 @default.
- W4382137218 cites W2608205523 @default.
- W4382137218 cites W2624056860 @default.
- W4382137218 cites W2761148789 @default.
- W4382137218 cites W2791014350 @default.
- W4382137218 cites W2803689879 @default.
- W4382137218 cites W2811309027 @default.
- W4382137218 cites W2956468533 @default.
- W4382137218 cites W2966106638 @default.
- W4382137218 cites W2970158822 @default.
- W4382137218 cites W2981620561 @default.
- W4382137218 cites W2995210970 @default.
- W4382137218 cites W2995597436 @default.
- W4382137218 cites W3013275008 @default.
- W4382137218 cites W3013699507 @default.
- W4382137218 cites W3021196409 @default.
- W4382137218 cites W3024726226 @default.
- W4382137218 cites W3026286413 @default.
- W4382137218 cites W3037287379 @default.
- W4382137218 cites W3037340860 @default.
- W4382137218 cites W3045079561 @default.
- W4382137218 cites W3045678118 @default.
- W4382137218 cites W3087903429 @default.
- W4382137218 cites W3097927837 @default.
- W4382137218 cites W3098019411 @default.
- W4382137218 cites W3098651812 @default.
- W4382137218 cites W3098989317 @default.
- W4382137218 cites W3099651099 @default.
- W4382137218 cites W3099850166 @default.
- W4382137218 cites W3101061340 @default.
- W4382137218 cites W3101208775 @default.
- W4382137218 cites W3101282732 @default.
- W4382137218 cites W3101773813 @default.
- W4382137218 cites W3102464633 @default.
- W4382137218 cites W3103129967 @default.
- W4382137218 cites W3103719673 @default.
- W4382137218 cites W3103836435 @default.
- W4382137218 cites W3103904513 @default.
- W4382137218 cites W3105828084 @default.
- W4382137218 cites W3106229998 @default.
- W4382137218 cites W3106376732 @default.
- W4382137218 cites W3106488320 @default.