Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382138511> ?p ?o ?g. }
- W4382138511 endingPage "64814" @default.
- W4382138511 startingPage "64796" @default.
- W4382138511 abstract "Self-harm pertains to actions of self-inflicted poisoning or injury that lead to either non-fatal injuries or death, irrespective of the individual’s intention. Self-harm incidents not only cause loss to individuals but also incur a negative impact on the nation’s economy. Studies have demonstrated an increase in trends of self-harm that are correlated with the emergence of technological advancements and swift urban expansion in developing countries. The capacity to nowcast and forecast national-level patterns of self-harm trends could be imperative to policymakers and stakeholders in the public health sector, as it would enable them to implement prompt measures to counteract the underlying factors or avert these projected calamities. Prior research has utilized historical data to predict self-harm trends at the population level in various nations using conventional statistical forecasting methods. However, in some countries, such historical statistics may be challenging to obtain or insufficient for accurate prediction, impeding the ability to comprehend and project the national self-harm landscape in a timely manner. This paper proposes <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>FAST</i> , a framework designed to forecast self-harm patterns at the national level by analyzing mental signals obtained from a large volume of social media data. These signals serve as a proxy for real-world population mental health that could be used to enhance the forecastability of self-harm trends. Specifically, language-agnostic language models are first trained to extract different mental signals from collected social media messages. Then, these signals are aggregated and processed into multi-variate time series, on which the time-delay embedding algorithm is applied to transform into temporal embedded instances. Finally, various machine learning regressors are validated for their forecastability. The proposed method is validated through a case study in Thailand, which utilizes a set of 12 mental signals extracted from tweets to forecast death and injury cases resulting from self-harm. The results show that the proposed method outperformed the traditional ARIMA baseline by 43.56% and 36.48% on average in terms of MAPE on forecasting death and injury cases from self-harm, respectively. As far as current understanding permits, our research represents the initial exploration of utilizing aggregated social media information for the purposes of nowcasting and forecasting trends of self-harm on a nationwide scale. The results not only provide insight into improved forecasting techniques for self-harm trends but also establish a foundation for forthcoming social-network-driven applications that hinge on the capacity to predict socioeconomic factors." @default.
- W4382138511 created "2023-06-27" @default.
- W4382138511 creator A5023506216 @default.
- W4382138511 creator A5056735442 @default.
- W4382138511 creator A5064301221 @default.
- W4382138511 creator A5076114622 @default.
- W4382138511 creator A5087350928 @default.
- W4382138511 date "2023-01-01" @default.
- W4382138511 modified "2023-09-25" @default.
- W4382138511 title "Forecasting National-Level Self-Harm Trends With Social Networks" @default.
- W4382138511 cites W1922396948 @default.
- W4382138511 cites W1970240622 @default.
- W4382138511 cites W1972259374 @default.
- W4382138511 cites W1979941595 @default.
- W4382138511 cites W2016023958 @default.
- W4382138511 cites W2045256553 @default.
- W4382138511 cites W2045757891 @default.
- W4382138511 cites W2046739002 @default.
- W4382138511 cites W2140034517 @default.
- W4382138511 cites W2141368857 @default.
- W4382138511 cites W2332322818 @default.
- W4382138511 cites W2340460378 @default.
- W4382138511 cites W2464870181 @default.
- W4382138511 cites W2487618647 @default.
- W4382138511 cites W2588710908 @default.
- W4382138511 cites W2588946000 @default.
- W4382138511 cites W2604439268 @default.
- W4382138511 cites W2749157153 @default.
- W4382138511 cites W2768273372 @default.
- W4382138511 cites W2770852547 @default.
- W4382138511 cites W2803422904 @default.
- W4382138511 cites W2807452501 @default.
- W4382138511 cites W2888421737 @default.
- W4382138511 cites W2898464679 @default.
- W4382138511 cites W2911546748 @default.
- W4382138511 cites W2921616123 @default.
- W4382138511 cites W2921730109 @default.
- W4382138511 cites W2938484004 @default.
- W4382138511 cites W2945005814 @default.
- W4382138511 cites W2946108622 @default.
- W4382138511 cites W2952462997 @default.
- W4382138511 cites W2961274044 @default.
- W4382138511 cites W2965749712 @default.
- W4382138511 cites W2972276740 @default.
- W4382138511 cites W2975086838 @default.
- W4382138511 cites W2980708516 @default.
- W4382138511 cites W2984058653 @default.
- W4382138511 cites W2999823319 @default.
- W4382138511 cites W3011605097 @default.
- W4382138511 cites W3013433991 @default.
- W4382138511 cites W3014939371 @default.
- W4382138511 cites W3015879336 @default.
- W4382138511 cites W3018371211 @default.
- W4382138511 cites W3028381291 @default.
- W4382138511 cites W3032158497 @default.
- W4382138511 cites W3032480207 @default.
- W4382138511 cites W3033317208 @default.
- W4382138511 cites W3033898341 @default.
- W4382138511 cites W3034323190 @default.
- W4382138511 cites W3041917899 @default.
- W4382138511 cites W3044322306 @default.
- W4382138511 cites W3044521017 @default.
- W4382138511 cites W3081414606 @default.
- W4382138511 cites W3082491947 @default.
- W4382138511 cites W3088524227 @default.
- W4382138511 cites W3095508763 @default.
- W4382138511 cites W3096011346 @default.
- W4382138511 cites W3099116679 @default.
- W4382138511 cites W3113662829 @default.
- W4382138511 cites W3131619198 @default.
- W4382138511 cites W3152252246 @default.
- W4382138511 cites W3166517631 @default.
- W4382138511 cites W3168675340 @default.
- W4382138511 cites W3186348330 @default.
- W4382138511 cites W3188872815 @default.
- W4382138511 cites W3201027357 @default.
- W4382138511 cites W3208101961 @default.
- W4382138511 cites W3209186852 @default.
- W4382138511 cites W3216057802 @default.
- W4382138511 cites W4206000553 @default.
- W4382138511 cites W4210248974 @default.
- W4382138511 cites W4210778911 @default.
- W4382138511 cites W4212812711 @default.
- W4382138511 cites W4213142429 @default.
- W4382138511 cites W4220771079 @default.
- W4382138511 cites W4220829290 @default.
- W4382138511 cites W4225123299 @default.
- W4382138511 cites W4283738913 @default.
- W4382138511 cites W4288457208 @default.
- W4382138511 cites W4292771458 @default.
- W4382138511 cites W4293755793 @default.
- W4382138511 cites W4306173662 @default.
- W4382138511 cites W4307559973 @default.
- W4382138511 cites W4318318000 @default.
- W4382138511 cites W4318474637 @default.
- W4382138511 cites W4321386677 @default.
- W4382138511 cites W4324018029 @default.
- W4382138511 cites W4380355896 @default.