Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382141076> ?p ?o ?g. }
- W4382141076 endingPage "1796" @default.
- W4382141076 startingPage "1787" @default.
- W4382141076 abstract "Many hydro-meteorological disasters in small and steep watersheds develop quickly and significantly impact human lives and infrastructures. High-resolution rainfall data and machine learning methods have been used as modeling frameworks to predict those events, such as flash floods. However, a critical question remains: How long must the rainfall input data be for an empirical-based hydrological forecast? The present article employed an artificial neural network (ANN)hydrological model to address this issue to predict river levels and investigate its dependency on antecedent rainfall conditions. The tests were performed using observed water level data and high-resolution weather radar rainfall estimation over a small watershed in the mountainous region of Rio de Janeiro, Brazil. As a result, the forecast water level time series only archived a successful performance (i.e., Nash–Sutcliffe model efficiency coefficient (NSE) > 0.6) when data inputs considered at least 2 h of accumulated rainfall, suggesting a strong physical association to the watershed time of concentration. Under extended periods of accumulated rainfall (>12 h), the framework reached considerably higher performance levels (i.e., NSE > 0.85), which may be related to the ability of the ANN to capture the subsurface response as well as past soil moisture states in the watershed. Additionally, we investigated the model’s robustness, considering different seeds for random number generating, and spacial applicability, looking at maps of weights." @default.
- W4382141076 created "2023-06-27" @default.
- W4382141076 creator A5000963691 @default.
- W4382141076 creator A5008112732 @default.
- W4382141076 creator A5012902101 @default.
- W4382141076 creator A5044404753 @default.
- W4382141076 creator A5078595328 @default.
- W4382141076 creator A5081550853 @default.
- W4382141076 creator A5087467465 @default.
- W4382141076 date "2023-06-24" @default.
- W4382141076 modified "2023-10-12" @default.
- W4382141076 title "A Neural Network-Based Hydrological Model for Very High-Resolution Forecasting Using Weather Radar Data" @default.
- W4382141076 cites W2033904036 @default.
- W4382141076 cites W2073403722 @default.
- W4382141076 cites W2077038928 @default.
- W4382141076 cites W2088733802 @default.
- W4382141076 cites W2103496339 @default.
- W4382141076 cites W2106044591 @default.
- W4382141076 cites W2115320707 @default.
- W4382141076 cites W2164973083 @default.
- W4382141076 cites W2177959459 @default.
- W4382141076 cites W2554023226 @default.
- W4382141076 cites W2572622164 @default.
- W4382141076 cites W2770245330 @default.
- W4382141076 cites W2964358315 @default.
- W4382141076 cites W2989857225 @default.
- W4382141076 cites W3047335959 @default.
- W4382141076 cites W3121936422 @default.
- W4382141076 cites W3161929512 @default.
- W4382141076 cites W3211618330 @default.
- W4382141076 cites W4230777928 @default.
- W4382141076 cites W4296907508 @default.
- W4382141076 cites W4362559996 @default.
- W4382141076 doi "https://doi.org/10.3390/eng4030101" @default.
- W4382141076 hasPublicationYear "2023" @default.
- W4382141076 type Work @default.
- W4382141076 citedByCount "0" @default.
- W4382141076 crossrefType "journal-article" @default.
- W4382141076 hasAuthorship W4382141076A5000963691 @default.
- W4382141076 hasAuthorship W4382141076A5008112732 @default.
- W4382141076 hasAuthorship W4382141076A5012902101 @default.
- W4382141076 hasAuthorship W4382141076A5044404753 @default.
- W4382141076 hasAuthorship W4382141076A5078595328 @default.
- W4382141076 hasAuthorship W4382141076A5081550853 @default.
- W4382141076 hasAuthorship W4382141076A5087467465 @default.
- W4382141076 hasBestOaLocation W43821410761 @default.
- W4382141076 hasConcept C104317684 @default.
- W4382141076 hasConcept C107054158 @default.
- W4382141076 hasConcept C119857082 @default.
- W4382141076 hasConcept C120417685 @default.
- W4382141076 hasConcept C126197015 @default.
- W4382141076 hasConcept C127313418 @default.
- W4382141076 hasConcept C150547873 @default.
- W4382141076 hasConcept C153294291 @default.
- W4382141076 hasConcept C166957645 @default.
- W4382141076 hasConcept C169258074 @default.
- W4382141076 hasConcept C185592680 @default.
- W4382141076 hasConcept C187320778 @default.
- W4382141076 hasConcept C205649164 @default.
- W4382141076 hasConcept C39432304 @default.
- W4382141076 hasConcept C41008148 @default.
- W4382141076 hasConcept C49204034 @default.
- W4382141076 hasConcept C50644808 @default.
- W4382141076 hasConcept C554190296 @default.
- W4382141076 hasConcept C55493867 @default.
- W4382141076 hasConcept C63479239 @default.
- W4382141076 hasConcept C74256435 @default.
- W4382141076 hasConcept C76155785 @default.
- W4382141076 hasConcept C76886044 @default.
- W4382141076 hasConcept C92237259 @default.
- W4382141076 hasConceptScore W4382141076C104317684 @default.
- W4382141076 hasConceptScore W4382141076C107054158 @default.
- W4382141076 hasConceptScore W4382141076C119857082 @default.
- W4382141076 hasConceptScore W4382141076C120417685 @default.
- W4382141076 hasConceptScore W4382141076C126197015 @default.
- W4382141076 hasConceptScore W4382141076C127313418 @default.
- W4382141076 hasConceptScore W4382141076C150547873 @default.
- W4382141076 hasConceptScore W4382141076C153294291 @default.
- W4382141076 hasConceptScore W4382141076C166957645 @default.
- W4382141076 hasConceptScore W4382141076C169258074 @default.
- W4382141076 hasConceptScore W4382141076C185592680 @default.
- W4382141076 hasConceptScore W4382141076C187320778 @default.
- W4382141076 hasConceptScore W4382141076C205649164 @default.
- W4382141076 hasConceptScore W4382141076C39432304 @default.
- W4382141076 hasConceptScore W4382141076C41008148 @default.
- W4382141076 hasConceptScore W4382141076C49204034 @default.
- W4382141076 hasConceptScore W4382141076C50644808 @default.
- W4382141076 hasConceptScore W4382141076C554190296 @default.
- W4382141076 hasConceptScore W4382141076C55493867 @default.
- W4382141076 hasConceptScore W4382141076C63479239 @default.
- W4382141076 hasConceptScore W4382141076C74256435 @default.
- W4382141076 hasConceptScore W4382141076C76155785 @default.
- W4382141076 hasConceptScore W4382141076C76886044 @default.
- W4382141076 hasConceptScore W4382141076C92237259 @default.
- W4382141076 hasFunder F4320321091 @default.
- W4382141076 hasIssue "3" @default.
- W4382141076 hasLocation W43821410761 @default.
- W4382141076 hasOpenAccess W4382141076 @default.