Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382198110> ?p ?o ?g. }
- W4382198110 endingPage "6072" @default.
- W4382198110 startingPage "6061" @default.
- W4382198110 abstract "The effect of the protonation state of glutamic acid on its translocation through cyclic peptide nanotubes (CPNs) was assessed by using molecular dynamics (MD) simulations. Anionic (GLU−), neutral zwitterionic (GLU0), and cationic (GLU+) forms of glutamic acid were selected as three different protonation states for an analysis of energetics and diffusivity for acid transport across a cyclic decapeptide nanotube. Based on the solubility-diffusion model, permeability coefficients for the three protonation states of the acid were calculated and compared with experimental results for CPN-mediated glutamate transport through CPNs. Potential of mean force (PMF) calculations reveal that, due to the cation-selective nature of the lumen of CPNs, GLU–, so-called glutamate, shows significantly high free energy barriers, while GLU+ displays deep energy wells and GLU0 has mild free energy barriers and wells inside the CPN. The considerable energy barriers for GLU– inside CPNs are mainly attributed to unfavorable interactions with DMPC bilayers and CPNs and are reduced by favorable interactions with channel water molecules through attractive electrostatic interactions and hydrogen bonding. Unlike the distinct PMF curves, position-dependent diffusion coefficient profiles exhibit comparable frictional behaviors regardless of the charge status of three protonation states due to similar confined environments imposed by the lumen of the CPN. The calculated permeability coefficients for the three protonation states clearly demonstrate that glutamic acid has a strong protonation state dependence for its transport through CPNs, as determined by the energetics rather than the diffusivity of the protonation state. In addition, the permeability coefficients also imply that GLU– is unlikely to pass through a CPN due to the high energy barriers inside the CPN, which is in disagreement with experimental measurements, where a considerable amount of glutamate permeating through the CPN was detected. To resolve the discrepancy between this work and the experimental observations, several possibilities are proposed, including a large concentration gradient of glutamate between the inside and outside of lipid vesicles and bilayers in the experiments, the glutamate activity difference between our MD simulations and experiments, an overestimation of energy barriers due to the artifacts imposed in MD simulations, and/or finally a transformation of the protonation state from GLU– to GLU0 to reduce the energy barriers. Overall, our study demonstrates that the protonation state of glutamic acid has a strong effect on the transport of the acid and suggests a possible protonation state change for glutamate permeating through CPNs." @default.
- W4382198110 created "2023-06-28" @default.
- W4382198110 creator A5007055762 @default.
- W4382198110 creator A5036293475 @default.
- W4382198110 creator A5041222266 @default.
- W4382198110 creator A5061930869 @default.
- W4382198110 creator A5064735594 @default.
- W4382198110 creator A5088150633 @default.
- W4382198110 date "2023-06-27" @default.
- W4382198110 modified "2023-10-17" @default.
- W4382198110 title "Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube" @default.
- W4382198110 cites W1963673259 @default.
- W4382198110 cites W1975090106 @default.
- W4382198110 cites W1975866642 @default.
- W4382198110 cites W1981467836 @default.
- W4382198110 cites W1982555875 @default.
- W4382198110 cites W1991655565 @default.
- W4382198110 cites W1993190737 @default.
- W4382198110 cites W1993984194 @default.
- W4382198110 cites W2001294077 @default.
- W4382198110 cites W2005515026 @default.
- W4382198110 cites W2011189520 @default.
- W4382198110 cites W2017268899 @default.
- W4382198110 cites W2018784012 @default.
- W4382198110 cites W2019347164 @default.
- W4382198110 cites W2027408247 @default.
- W4382198110 cites W2029667189 @default.
- W4382198110 cites W2030151560 @default.
- W4382198110 cites W2036547515 @default.
- W4382198110 cites W2037462822 @default.
- W4382198110 cites W2041189078 @default.
- W4382198110 cites W2049975788 @default.
- W4382198110 cites W2053081979 @default.
- W4382198110 cites W2057883075 @default.
- W4382198110 cites W2059906178 @default.
- W4382198110 cites W2063141861 @default.
- W4382198110 cites W2065329899 @default.
- W4382198110 cites W2066414494 @default.
- W4382198110 cites W2069378919 @default.
- W4382198110 cites W2084513255 @default.
- W4382198110 cites W2086251676 @default.
- W4382198110 cites W2115634568 @default.
- W4382198110 cites W2119915129 @default.
- W4382198110 cites W2121678787 @default.
- W4382198110 cites W2124548597 @default.
- W4382198110 cites W2150981663 @default.
- W4382198110 cites W2169980354 @default.
- W4382198110 cites W2289099079 @default.
- W4382198110 cites W2326404322 @default.
- W4382198110 cites W2339460745 @default.
- W4382198110 cites W2345798490 @default.
- W4382198110 cites W2346348293 @default.
- W4382198110 cites W2547911098 @default.
- W4382198110 cites W2548311158 @default.
- W4382198110 cites W2596074410 @default.
- W4382198110 cites W2599035575 @default.
- W4382198110 cites W2599649240 @default.
- W4382198110 cites W2608314580 @default.
- W4382198110 cites W2731130386 @default.
- W4382198110 cites W2767829222 @default.
- W4382198110 cites W2769617661 @default.
- W4382198110 cites W2885999133 @default.
- W4382198110 cites W2892113269 @default.
- W4382198110 cites W2913095383 @default.
- W4382198110 cites W2937040465 @default.
- W4382198110 cites W2951489519 @default.
- W4382198110 doi "https://doi.org/10.1021/acs.jpcb.3c02285" @default.
- W4382198110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37369069" @default.
- W4382198110 hasPublicationYear "2023" @default.
- W4382198110 type Work @default.
- W4382198110 citedByCount "0" @default.
- W4382198110 crossrefType "journal-article" @default.
- W4382198110 hasAuthorship W4382198110A5007055762 @default.
- W4382198110 hasAuthorship W4382198110A5036293475 @default.
- W4382198110 hasAuthorship W4382198110A5041222266 @default.
- W4382198110 hasAuthorship W4382198110A5061930869 @default.
- W4382198110 hasAuthorship W4382198110A5064735594 @default.
- W4382198110 hasAuthorship W4382198110A5088150633 @default.
- W4382198110 hasConcept C112887158 @default.
- W4382198110 hasConcept C121332964 @default.
- W4382198110 hasConcept C145148216 @default.
- W4382198110 hasConcept C147597530 @default.
- W4382198110 hasConcept C159467904 @default.
- W4382198110 hasConcept C175634916 @default.
- W4382198110 hasConcept C178790620 @default.
- W4382198110 hasConcept C185592680 @default.
- W4382198110 hasConcept C2778740566 @default.
- W4382198110 hasConcept C30095370 @default.
- W4382198110 hasConcept C32909587 @default.
- W4382198110 hasConcept C515207424 @default.
- W4382198110 hasConcept C55493867 @default.
- W4382198110 hasConcept C59593255 @default.
- W4382198110 hasConcept C69357855 @default.
- W4382198110 hasConcept C97355855 @default.
- W4382198110 hasConceptScore W4382198110C112887158 @default.
- W4382198110 hasConceptScore W4382198110C121332964 @default.
- W4382198110 hasConceptScore W4382198110C145148216 @default.
- W4382198110 hasConceptScore W4382198110C147597530 @default.