Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382198512> ?p ?o ?g. }
- W4382198512 abstract "Abstract Deep learning applied to magnetic resonance imaging data have shown great promise as a translational technology for diagnosis and prognosis in dementia, but its impact clinically has thus far been limited. This is partially attributed to the opaqueness of deep learning models, causing insufficient understanding of what underlies their decisions. To overcome this, we trained convolutional neural nets to differentiate patients with dementia from healthy controls, and applied layerwise relevance propagation to procure individual-level explanations of the model predictions. Through extensive validations we demonstrate that patterns recognized by the model corroborate existing knowledge of neuropathology in dementia. Next, employing the explainable dementia classifier in a longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich explanations complement the prediction for prognosis, and help characterize the personalized manifestation of disease. Overall, our work exemplifies the clinical potential of explainable artificial intelligence in precision medicine." @default.
- W4382198512 created "2023-06-28" @default.
- W4382198512 creator A5001262243 @default.
- W4382198512 creator A5002668347 @default.
- W4382198512 creator A5004031712 @default.
- W4382198512 creator A5004304018 @default.
- W4382198512 creator A5007726770 @default.
- W4382198512 creator A5030229737 @default.
- W4382198512 creator A5039875160 @default.
- W4382198512 creator A5043361291 @default.
- W4382198512 creator A5043557856 @default.
- W4382198512 creator A5047803917 @default.
- W4382198512 creator A5064324947 @default.
- W4382198512 creator A5067212851 @default.
- W4382198512 creator A5089623913 @default.
- W4382198512 creator A5091761578 @default.
- W4382198512 creator A5092275244 @default.
- W4382198512 date "2023-06-27" @default.
- W4382198512 modified "2023-10-04" @default.
- W4382198512 title "Characterizing personalized neuropathology in dementia and mild cognitive impairment with explainable artificial intelligence" @default.
- W4382198512 cites W1609112731 @default.
- W4382198512 cites W1787224781 @default.
- W4382198512 cites W1884191083 @default.
- W4382198512 cites W1962263973 @default.
- W4382198512 cites W1968426398 @default.
- W4382198512 cites W1996330824 @default.
- W4382198512 cites W2011341420 @default.
- W4382198512 cites W2014801166 @default.
- W4382198512 cites W2028085829 @default.
- W4382198512 cites W2044491272 @default.
- W4382198512 cites W2067203120 @default.
- W4382198512 cites W2073045674 @default.
- W4382198512 cites W2089596781 @default.
- W4382198512 cites W2101135654 @default.
- W4382198512 cites W2115281122 @default.
- W4382198512 cites W2117602475 @default.
- W4382198512 cites W2122328291 @default.
- W4382198512 cites W2138960684 @default.
- W4382198512 cites W2141470005 @default.
- W4382198512 cites W2148726987 @default.
- W4382198512 cites W2151920318 @default.
- W4382198512 cites W2156676059 @default.
- W4382198512 cites W2157270343 @default.
- W4382198512 cites W2164025570 @default.
- W4382198512 cites W2165612785 @default.
- W4382198512 cites W2171447090 @default.
- W4382198512 cites W2181523240 @default.
- W4382198512 cites W2240067561 @default.
- W4382198512 cites W2310177520 @default.
- W4382198512 cites W2750376078 @default.
- W4382198512 cites W2809543070 @default.
- W4382198512 cites W2903517662 @default.
- W4382198512 cites W2956993163 @default.
- W4382198512 cites W2964054038 @default.
- W4382198512 cites W2965512201 @default.
- W4382198512 cites W2967578682 @default.
- W4382198512 cites W2972441196 @default.
- W4382198512 cites W2973136764 @default.
- W4382198512 cites W2977883299 @default.
- W4382198512 cites W2979200397 @default.
- W4382198512 cites W2981731882 @default.
- W4382198512 cites W2982314381 @default.
- W4382198512 cites W2995724321 @default.
- W4382198512 cites W3000716014 @default.
- W4382198512 cites W3035192651 @default.
- W4382198512 cites W3091589898 @default.
- W4382198512 cites W3092783643 @default.
- W4382198512 cites W3092849554 @default.
- W4382198512 cites W3103145119 @default.
- W4382198512 cites W3103654318 @default.
- W4382198512 cites W3122118149 @default.
- W4382198512 cites W3156146497 @default.
- W4382198512 cites W3161371747 @default.
- W4382198512 cites W3185122822 @default.
- W4382198512 cites W3209901185 @default.
- W4382198512 cites W3212684309 @default.
- W4382198512 cites W4206055706 @default.
- W4382198512 cites W4212942200 @default.
- W4382198512 cites W4225331400 @default.
- W4382198512 cites W4232336598 @default.
- W4382198512 cites W4282040792 @default.
- W4382198512 cites W4304893033 @default.
- W4382198512 cites W4306407322 @default.
- W4382198512 cites W4318716385 @default.
- W4382198512 cites W4319216300 @default.
- W4382198512 cites W4377019361 @default.
- W4382198512 doi "https://doi.org/10.1101/2023.06.22.23291592" @default.
- W4382198512 hasPublicationYear "2023" @default.
- W4382198512 type Work @default.
- W4382198512 citedByCount "0" @default.
- W4382198512 crossrefType "posted-content" @default.
- W4382198512 hasAuthorship W4382198512A5001262243 @default.
- W4382198512 hasAuthorship W4382198512A5002668347 @default.
- W4382198512 hasAuthorship W4382198512A5004031712 @default.
- W4382198512 hasAuthorship W4382198512A5004304018 @default.
- W4382198512 hasAuthorship W4382198512A5007726770 @default.
- W4382198512 hasAuthorship W4382198512A5030229737 @default.
- W4382198512 hasAuthorship W4382198512A5039875160 @default.
- W4382198512 hasAuthorship W4382198512A5043361291 @default.
- W4382198512 hasAuthorship W4382198512A5043557856 @default.