Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382201609> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4382201609 abstract "The entire world has been undergoing its own digital transformation over the past few decades as technology has advanced in leaps and bounds. Following this, an increase in the number of people using digital platforms for buying products online likewise increases the number of questions or enquiries posted about a product on an online shopping platform like Amazon on a day to day basis. Though we have gone completely digital in posting these questions, the answering of these questions is still manual. The forums are rarely active. By the time the user gets an answer to his question, either he has bought that product already through offline means or has lost interest in buying that product since it is time consuming. Moreover, the questions which are asked are mostly repetitive. At times the answers are already out there since they have already been given to some other user who had asked the same question. Also, lot of answers are embedded in the user reviews. Therefore, the answers can be extracted from the existing product reviews. This may lead to increase in sale and greater customer satisfaction as his query is resolved in much lower response time. We have review-based question answering systems that aim at answering the questions from the reviews given on the product by other customers. However, the existing systems have certain drawbacks due to the use of RNN, like missing attention mechanism etc. In this work, we enhance the performance of the existing review based QA systems by carrying out some prototypical experiments with the basic models of NLP and then moving towards more advanced Language Models while identifying and rectifying the shortcomings of the existing model. Further, in this work a thorough comparative analysis of the models and approaches that have been worked on is presented. We have enhanced the current state of the art existing review QA systems by using BERT, BART and also applied various heuristics for comparison. We achieved the best BLEU score of 0.58 by using BERT, which is an improvement of 0.19 on the current existing system." @default.
- W4382201609 created "2023-06-28" @default.
- W4382201609 creator A5029680307 @default.
- W4382201609 creator A5033354587 @default.
- W4382201609 creator A5054750558 @default.
- W4382201609 creator A5092275992 @default.
- W4382201609 creator A5092275993 @default.
- W4382201609 creator A5092275994 @default.
- W4382201609 date "2022-12-16" @default.
- W4382201609 modified "2023-09-25" @default.
- W4382201609 title "Responding to customer queries automatically by customer reviews’ based Question Answering" @default.
- W4382201609 cites W2064675550 @default.
- W4382201609 cites W2759200442 @default.
- W4382201609 cites W2963748441 @default.
- W4382201609 cites W2965826089 @default.
- W4382201609 cites W3012856521 @default.
- W4382201609 cites W3034999214 @default.
- W4382201609 doi "https://doi.org/10.1145/3582768.3582780" @default.
- W4382201609 hasPublicationYear "2022" @default.
- W4382201609 type Work @default.
- W4382201609 citedByCount "0" @default.
- W4382201609 crossrefType "proceedings-article" @default.
- W4382201609 hasAuthorship W4382201609A5029680307 @default.
- W4382201609 hasAuthorship W4382201609A5033354587 @default.
- W4382201609 hasAuthorship W4382201609A5054750558 @default.
- W4382201609 hasAuthorship W4382201609A5092275992 @default.
- W4382201609 hasAuthorship W4382201609A5092275993 @default.
- W4382201609 hasAuthorship W4382201609A5092275994 @default.
- W4382201609 hasConcept C10138342 @default.
- W4382201609 hasConcept C136764020 @default.
- W4382201609 hasConcept C144133560 @default.
- W4382201609 hasConcept C23123220 @default.
- W4382201609 hasConcept C2524010 @default.
- W4382201609 hasConcept C2777705401 @default.
- W4382201609 hasConcept C33923547 @default.
- W4382201609 hasConcept C41008148 @default.
- W4382201609 hasConcept C44291984 @default.
- W4382201609 hasConcept C90673727 @default.
- W4382201609 hasConceptScore W4382201609C10138342 @default.
- W4382201609 hasConceptScore W4382201609C136764020 @default.
- W4382201609 hasConceptScore W4382201609C144133560 @default.
- W4382201609 hasConceptScore W4382201609C23123220 @default.
- W4382201609 hasConceptScore W4382201609C2524010 @default.
- W4382201609 hasConceptScore W4382201609C2777705401 @default.
- W4382201609 hasConceptScore W4382201609C33923547 @default.
- W4382201609 hasConceptScore W4382201609C41008148 @default.
- W4382201609 hasConceptScore W4382201609C44291984 @default.
- W4382201609 hasConceptScore W4382201609C90673727 @default.
- W4382201609 hasLocation W43822016091 @default.
- W4382201609 hasOpenAccess W4382201609 @default.
- W4382201609 hasPrimaryLocation W43822016091 @default.
- W4382201609 hasRelatedWork W1512698090 @default.
- W4382201609 hasRelatedWork W15319282 @default.
- W4382201609 hasRelatedWork W1602056621 @default.
- W4382201609 hasRelatedWork W1602736231 @default.
- W4382201609 hasRelatedWork W2118091901 @default.
- W4382201609 hasRelatedWork W2135033253 @default.
- W4382201609 hasRelatedWork W2138279922 @default.
- W4382201609 hasRelatedWork W2366644548 @default.
- W4382201609 hasRelatedWork W2373213638 @default.
- W4382201609 hasRelatedWork W2766216809 @default.
- W4382201609 isParatext "false" @default.
- W4382201609 isRetracted "false" @default.
- W4382201609 workType "article" @default.