Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382201640> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4382201640 abstract "We live in a flood of big data and information through computers, communications, social media, and mass media. In other words, we can get the information we want quickly and easily, but we have many questions about the accuracy and reliability of this information. That is, there are many problems in trying to obtain accurate knowledge of such reckless details, and in particular, advertisement articles provided by online newspapers need to be clearer and more manageable when individuals try to find precise information and reports. Such experiences are threatened even to the foundation of existence due to distrust of Internet newspapers and advertisement evasion. To solve this problem, this study used emotion analysis of natural language processing to classify general and advertisement articles. Getting going Existing similar studies have mainly been undertaken to classify such advertisement articles, such as spam mail classification, and most of these studies used general natural language processing. However, this paper is a study that analyzes text data to understand further the meaning of the words, sentences, and phrases and adds steps to explore emotions to provide more accurate information that individuals want." @default.
- W4382201640 created "2023-06-28" @default.
- W4382201640 creator A5006748986 @default.
- W4382201640 creator A5028651278 @default.
- W4382201640 date "2022-12-16" @default.
- W4382201640 modified "2023-09-25" @default.
- W4382201640 title "Classification of advertisement articles using sentiment analysis" @default.
- W4382201640 cites W2023505872 @default.
- W4382201640 cites W2031213082 @default.
- W4382201640 cites W2049047933 @default.
- W4382201640 cites W4233906183 @default.
- W4382201640 doi "https://doi.org/10.1145/3582768.3582800" @default.
- W4382201640 hasPublicationYear "2022" @default.
- W4382201640 type Work @default.
- W4382201640 citedByCount "0" @default.
- W4382201640 crossrefType "proceedings-article" @default.
- W4382201640 hasAuthorship W4382201640A5006748986 @default.
- W4382201640 hasAuthorship W4382201640A5028651278 @default.
- W4382201640 hasConcept C110875604 @default.
- W4382201640 hasConcept C112698675 @default.
- W4382201640 hasConcept C121332964 @default.
- W4382201640 hasConcept C136764020 @default.
- W4382201640 hasConcept C144133560 @default.
- W4382201640 hasConcept C15744967 @default.
- W4382201640 hasConcept C163258240 @default.
- W4382201640 hasConcept C195324797 @default.
- W4382201640 hasConcept C201280247 @default.
- W4382201640 hasConcept C204321447 @default.
- W4382201640 hasConcept C23123220 @default.
- W4382201640 hasConcept C2522767166 @default.
- W4382201640 hasConcept C2778321746 @default.
- W4382201640 hasConcept C2780876879 @default.
- W4382201640 hasConcept C41008148 @default.
- W4382201640 hasConcept C43214815 @default.
- W4382201640 hasConcept C518677369 @default.
- W4382201640 hasConcept C542102704 @default.
- W4382201640 hasConcept C62520636 @default.
- W4382201640 hasConcept C66402592 @default.
- W4382201640 hasConceptScore W4382201640C110875604 @default.
- W4382201640 hasConceptScore W4382201640C112698675 @default.
- W4382201640 hasConceptScore W4382201640C121332964 @default.
- W4382201640 hasConceptScore W4382201640C136764020 @default.
- W4382201640 hasConceptScore W4382201640C144133560 @default.
- W4382201640 hasConceptScore W4382201640C15744967 @default.
- W4382201640 hasConceptScore W4382201640C163258240 @default.
- W4382201640 hasConceptScore W4382201640C195324797 @default.
- W4382201640 hasConceptScore W4382201640C201280247 @default.
- W4382201640 hasConceptScore W4382201640C204321447 @default.
- W4382201640 hasConceptScore W4382201640C23123220 @default.
- W4382201640 hasConceptScore W4382201640C2522767166 @default.
- W4382201640 hasConceptScore W4382201640C2778321746 @default.
- W4382201640 hasConceptScore W4382201640C2780876879 @default.
- W4382201640 hasConceptScore W4382201640C41008148 @default.
- W4382201640 hasConceptScore W4382201640C43214815 @default.
- W4382201640 hasConceptScore W4382201640C518677369 @default.
- W4382201640 hasConceptScore W4382201640C542102704 @default.
- W4382201640 hasConceptScore W4382201640C62520636 @default.
- W4382201640 hasConceptScore W4382201640C66402592 @default.
- W4382201640 hasLocation W43822016401 @default.
- W4382201640 hasOpenAccess W4382201640 @default.
- W4382201640 hasPrimaryLocation W43822016401 @default.
- W4382201640 hasRelatedWork W2243502667 @default.
- W4382201640 hasRelatedWork W2252197266 @default.
- W4382201640 hasRelatedWork W2748952813 @default.
- W4382201640 hasRelatedWork W3148756070 @default.
- W4382201640 hasRelatedWork W4205350312 @default.
- W4382201640 hasRelatedWork W4312733094 @default.
- W4382201640 hasRelatedWork W4323058004 @default.
- W4382201640 hasRelatedWork W4362564252 @default.
- W4382201640 hasRelatedWork W4381137115 @default.
- W4382201640 hasRelatedWork W63223808 @default.
- W4382201640 isParatext "false" @default.
- W4382201640 isRetracted "false" @default.
- W4382201640 workType "article" @default.