Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382202092> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4382202092 endingPage "92" @default.
- W4382202092 startingPage "92" @default.
- W4382202092 abstract "Pattern sequence-based models are a type of forecasting algorithm that utilizes clustering and other techniques to produce easily interpretable predictions faster than traditional machine learning models. This research focuses on their application in energy demand forecasting and introduces two significant contributions to the field. Firstly, this study evaluates the use of pattern sequence-based models with large datasets. Unlike previous works that use only one dataset or multiple datasets with less than two years of data, this work evaluates the models in three different public datasets, each containing eleven years of data. Secondly, we propose a new pattern sequence-based algorithm that uses a genetic algorithm to optimize the number of clusters alongside all other hyperparameters of the forecasting method, instead of using the Cluster Validity Indices (CVIs) commonly used in previous proposals. The results indicate that neural networks provide more accurate results than any pattern sequence-based algorithm and that our proposed algorithm outperforms other pattern sequence-based algorithms, albeit with a longer training time." @default.
- W4382202092 created "2023-06-28" @default.
- W4382202092 creator A5017096452 @default.
- W4382202092 creator A5041919110 @default.
- W4382202092 creator A5081994795 @default.
- W4382202092 date "2023-05-10" @default.
- W4382202092 modified "2023-09-30" @default.
- W4382202092 title "An Improved Pattern Sequence-Based Energy Load Forecast Algorithm Based on Self-Organizing Maps and Artificial Neural Networks" @default.
- W4382202092 cites W1978702499 @default.
- W4382202092 cites W1990517717 @default.
- W4382202092 cites W2103862045 @default.
- W4382202092 cites W2116174583 @default.
- W4382202092 cites W2132090392 @default.
- W4382202092 cites W2150593711 @default.
- W4382202092 cites W2511753245 @default.
- W4382202092 cites W2747599906 @default.
- W4382202092 cites W2754252319 @default.
- W4382202092 cites W2807831972 @default.
- W4382202092 cites W2883971393 @default.
- W4382202092 cites W2892452712 @default.
- W4382202092 cites W3021613070 @default.
- W4382202092 cites W3036860367 @default.
- W4382202092 cites W3094704314 @default.
- W4382202092 cites W3187425334 @default.
- W4382202092 cites W3195840469 @default.
- W4382202092 cites W4221118637 @default.
- W4382202092 doi "https://doi.org/10.3390/bdcc7020092" @default.
- W4382202092 hasPublicationYear "2023" @default.
- W4382202092 type Work @default.
- W4382202092 citedByCount "0" @default.
- W4382202092 crossrefType "journal-article" @default.
- W4382202092 hasAuthorship W4382202092A5017096452 @default.
- W4382202092 hasAuthorship W4382202092A5041919110 @default.
- W4382202092 hasAuthorship W4382202092A5081994795 @default.
- W4382202092 hasBestOaLocation W43822020921 @default.
- W4382202092 hasConcept C105795698 @default.
- W4382202092 hasConcept C11413529 @default.
- W4382202092 hasConcept C119857082 @default.
- W4382202092 hasConcept C124101348 @default.
- W4382202092 hasConcept C153180895 @default.
- W4382202092 hasConcept C154945302 @default.
- W4382202092 hasConcept C186370098 @default.
- W4382202092 hasConcept C202444582 @default.
- W4382202092 hasConcept C2778112365 @default.
- W4382202092 hasConcept C33923547 @default.
- W4382202092 hasConcept C41008148 @default.
- W4382202092 hasConcept C50644808 @default.
- W4382202092 hasConcept C54355233 @default.
- W4382202092 hasConcept C73555534 @default.
- W4382202092 hasConcept C8642999 @default.
- W4382202092 hasConcept C86803240 @default.
- W4382202092 hasConcept C8880873 @default.
- W4382202092 hasConcept C9652623 @default.
- W4382202092 hasConceptScore W4382202092C105795698 @default.
- W4382202092 hasConceptScore W4382202092C11413529 @default.
- W4382202092 hasConceptScore W4382202092C119857082 @default.
- W4382202092 hasConceptScore W4382202092C124101348 @default.
- W4382202092 hasConceptScore W4382202092C153180895 @default.
- W4382202092 hasConceptScore W4382202092C154945302 @default.
- W4382202092 hasConceptScore W4382202092C186370098 @default.
- W4382202092 hasConceptScore W4382202092C202444582 @default.
- W4382202092 hasConceptScore W4382202092C2778112365 @default.
- W4382202092 hasConceptScore W4382202092C33923547 @default.
- W4382202092 hasConceptScore W4382202092C41008148 @default.
- W4382202092 hasConceptScore W4382202092C50644808 @default.
- W4382202092 hasConceptScore W4382202092C54355233 @default.
- W4382202092 hasConceptScore W4382202092C73555534 @default.
- W4382202092 hasConceptScore W4382202092C8642999 @default.
- W4382202092 hasConceptScore W4382202092C86803240 @default.
- W4382202092 hasConceptScore W4382202092C8880873 @default.
- W4382202092 hasConceptScore W4382202092C9652623 @default.
- W4382202092 hasFunder F4320326754 @default.
- W4382202092 hasIssue "2" @default.
- W4382202092 hasLocation W43822020921 @default.
- W4382202092 hasOpenAccess W4382202092 @default.
- W4382202092 hasPrimaryLocation W43822020921 @default.
- W4382202092 hasRelatedWork W2392110728 @default.
- W4382202092 hasRelatedWork W3199608561 @default.
- W4382202092 hasRelatedWork W4210794429 @default.
- W4382202092 hasRelatedWork W4223456145 @default.
- W4382202092 hasRelatedWork W4225307033 @default.
- W4382202092 hasRelatedWork W4280535922 @default.
- W4382202092 hasRelatedWork W4295309597 @default.
- W4382202092 hasRelatedWork W4309113015 @default.
- W4382202092 hasRelatedWork W4313854490 @default.
- W4382202092 hasRelatedWork W4323894855 @default.
- W4382202092 hasVolume "7" @default.
- W4382202092 isParatext "false" @default.
- W4382202092 isRetracted "false" @default.
- W4382202092 workType "article" @default.