Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382203156> ?p ?o ?g. }
- W4382203156 endingPage "65152" @default.
- W4382203156 startingPage "65138" @default.
- W4382203156 abstract "Pressure ulcers are a challenge for patients and healthcare professionals. In the UK, pressure ulcers affect 700,000 people each year. Treating them costs the National Health Service £3.8 million every day. Their etiology is complex and multifactorial. However, evidence has shown a strong link between old age, disease-related sedentary lifestyles, and unhealthy eating habits. Direct skin contact with a bed or chair without frequent position changes can cause pressure ulcers. Urinary and faecal incontinence, diabetes, and injuries that restrict body position and nutrition are also known risk factors. Guidelines and treatments exist but their implementation and success vary across different healthcare settings. This is primarily because healthcare practitioners have a) minimal experience in dealing with pressure ulcers, and b) a general lack of understanding of pressure ulcer treatments. Poorly managed, pressure ulcers can lead to severe pain, a poor quality of life, and significant healthcare costs. In this paper, we report the findings of a clinical trial conducted by Mersey Care NHS Foundation Trust that evaluated the performance of a faster region-based convolutional neural network and mobile platform that categorised and documented pressure ulcers automatically. The neural network classifies category I, II, III, and IV pressure ulcers, deep tissue injuries, and pressure ulcers that are unstageable. District nurses used their mobile phones to take pictures of pressure ulcers and transmit them over 4/5G communications to an inferencing server for classification. The approach uses existing deep learning technologies to provide a novel end-to-end pipeline for pressure ulcer categorisation that works in ad hoc domiciliary settings. The strength of the approach resides within MLOPS, model deployment at scale, and the platforms in-situ operation. While solutions exist in the NHS for analysing pressure ulcers none of them automatically classify and report pressure ulcers from a service users’ residential home automatically. We acknowledge that there is a great deal of work to do, but the approach offers a convincing solution to standardise pressure ulcer categorisation and reporting. The results from the study are encouraging and show that using 216 images, collected over an eight-month trial, it was possible to generate a mean average Precision=0.6796, Recall=0.6997, F1-Score=0.6786 with 45 false positives using an @.75 confidence score threshold." @default.
- W4382203156 created "2023-06-28" @default.
- W4382203156 creator A5009721363 @default.
- W4382203156 creator A5011292182 @default.
- W4382203156 creator A5015808667 @default.
- W4382203156 creator A5016218720 @default.
- W4382203156 creator A5019193550 @default.
- W4382203156 date "2023-01-01" @default.
- W4382203156 modified "2023-09-26" @default.
- W4382203156 title "Pressure Ulcer Categorization and Reporting in Domiciliary Settings Using Deep Learning and Mobile Devices: A Clinical Trial to Evaluate End-to-End Performance" @default.
- W4382203156 cites W1864693642 @default.
- W4382203156 cites W1928900943 @default.
- W4382203156 cites W1997922978 @default.
- W4382203156 cites W2001291669 @default.
- W4382203156 cites W2005799640 @default.
- W4382203156 cites W2049617691 @default.
- W4382203156 cites W2063322696 @default.
- W4382203156 cites W2069816479 @default.
- W4382203156 cites W2098670130 @default.
- W4382203156 cites W2104095591 @default.
- W4382203156 cites W2113543042 @default.
- W4382203156 cites W2118023920 @default.
- W4382203156 cites W2118386984 @default.
- W4382203156 cites W2121354206 @default.
- W4382203156 cites W2121947440 @default.
- W4382203156 cites W2133059825 @default.
- W4382203156 cites W2151096925 @default.
- W4382203156 cites W2178876274 @default.
- W4382203156 cites W2194775991 @default.
- W4382203156 cites W2232019977 @default.
- W4382203156 cites W2395579298 @default.
- W4382203156 cites W2511626855 @default.
- W4382203156 cites W2577387418 @default.
- W4382203156 cites W2753684960 @default.
- W4382203156 cites W2754210552 @default.
- W4382203156 cites W2758967548 @default.
- W4382203156 cites W2772361236 @default.
- W4382203156 cites W2772727698 @default.
- W4382203156 cites W2789325239 @default.
- W4382203156 cites W2806928165 @default.
- W4382203156 cites W2884547731 @default.
- W4382203156 cites W2892997981 @default.
- W4382203156 cites W2912480902 @default.
- W4382203156 cites W2944111886 @default.
- W4382203156 cites W2953082339 @default.
- W4382203156 cites W2963037989 @default.
- W4382203156 cites W2963150697 @default.
- W4382203156 cites W2964118901 @default.
- W4382203156 cites W2980189697 @default.
- W4382203156 cites W2995790441 @default.
- W4382203156 cites W3005009412 @default.
- W4382203156 cites W3108163740 @default.
- W4382203156 cites W3118891284 @default.
- W4382203156 cites W4213219238 @default.
- W4382203156 cites W4220910889 @default.
- W4382203156 cites W4221085494 @default.
- W4382203156 cites W4225383527 @default.
- W4382203156 cites W4288391511 @default.
- W4382203156 cites W4289950758 @default.
- W4382203156 cites W4313472003 @default.
- W4382203156 cites W4316467238 @default.
- W4382203156 cites W4318938311 @default.
- W4382203156 cites W4319460321 @default.
- W4382203156 cites W4322775461 @default.
- W4382203156 cites W4324095604 @default.
- W4382203156 cites W4362519776 @default.
- W4382203156 cites W4367189201 @default.
- W4382203156 cites W639708223 @default.
- W4382203156 cites W2108537976 @default.
- W4382203156 doi "https://doi.org/10.1109/access.2023.3289839" @default.
- W4382203156 hasPublicationYear "2023" @default.
- W4382203156 type Work @default.
- W4382203156 citedByCount "0" @default.
- W4382203156 crossrefType "journal-article" @default.
- W4382203156 hasAuthorship W4382203156A5009721363 @default.
- W4382203156 hasAuthorship W4382203156A5011292182 @default.
- W4382203156 hasAuthorship W4382203156A5015808667 @default.
- W4382203156 hasAuthorship W4382203156A5016218720 @default.
- W4382203156 hasAuthorship W4382203156A5019193550 @default.
- W4382203156 hasBestOaLocation W43822031561 @default.
- W4382203156 hasConcept C154945302 @default.
- W4382203156 hasConcept C160735492 @default.
- W4382203156 hasConcept C162324750 @default.
- W4382203156 hasConcept C177713679 @default.
- W4382203156 hasConcept C41008148 @default.
- W4382203156 hasConcept C50522688 @default.
- W4382203156 hasConcept C545542383 @default.
- W4382203156 hasConcept C71924100 @default.
- W4382203156 hasConcept C94124525 @default.
- W4382203156 hasConceptScore W4382203156C154945302 @default.
- W4382203156 hasConceptScore W4382203156C160735492 @default.
- W4382203156 hasConceptScore W4382203156C162324750 @default.
- W4382203156 hasConceptScore W4382203156C177713679 @default.
- W4382203156 hasConceptScore W4382203156C41008148 @default.
- W4382203156 hasConceptScore W4382203156C50522688 @default.
- W4382203156 hasConceptScore W4382203156C545542383 @default.
- W4382203156 hasConceptScore W4382203156C71924100 @default.
- W4382203156 hasConceptScore W4382203156C94124525 @default.