Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382240498> ?p ?o ?g. }
- W4382240498 endingPage "246" @default.
- W4382240498 startingPage "235" @default.
- W4382240498 abstract "Abstract Univariate visualizations like histograms, rug plots, or box plots provide concise visual summaries of distributions. However, each individual visualization may fail to robustly distinguish important features of a distribution, or provide sufficient information for all of the relevant tasks involved in summarizing univariate data. One solution is to juxtapose or superimpose multiple univariate visualizations in the same chart, as in Allen et al.'s [APW * 19] “raincloud plots.” In this paper I examine the design space of raincloud plots, and, through a series of simulation studies, explore designs where the component visualizations mutually “defend” against situations where important distribution features are missed or trivial features are given undue prominence. I suggest a class of “defensive” raincloud plot designs that provide good mutual coverage for surfacing distributional features of interest." @default.
- W4382240498 created "2023-06-28" @default.
- W4382240498 creator A5036300289 @default.
- W4382240498 date "2023-06-01" @default.
- W4382240498 modified "2023-10-02" @default.
- W4382240498 title "<i>Teru Teru Bōzu</i>: Defensive Raincloud Plots" @default.
- W4382240498 cites W1987269142 @default.
- W4382240498 cites W1992091432 @default.
- W4382240498 cites W2005534705 @default.
- W4382240498 cites W2025037675 @default.
- W4382240498 cites W2026377765 @default.
- W4382240498 cites W2026602906 @default.
- W4382240498 cites W2042204882 @default.
- W4382240498 cites W2048092465 @default.
- W4382240498 cites W2057828920 @default.
- W4382240498 cites W2064236037 @default.
- W4382240498 cites W2069228960 @default.
- W4382240498 cites W2084678488 @default.
- W4382240498 cites W2095413996 @default.
- W4382240498 cites W2103484089 @default.
- W4382240498 cites W2127775323 @default.
- W4382240498 cites W2135415614 @default.
- W4382240498 cites W2139262486 @default.
- W4382240498 cites W2144024567 @default.
- W4382240498 cites W2145680370 @default.
- W4382240498 cites W2152922709 @default.
- W4382240498 cites W2169112940 @default.
- W4382240498 cites W2300653232 @default.
- W4382240498 cites W2398344594 @default.
- W4382240498 cites W2416272719 @default.
- W4382240498 cites W2509007087 @default.
- W4382240498 cites W2516678343 @default.
- W4382240498 cites W2590401502 @default.
- W4382240498 cites W2610226709 @default.
- W4382240498 cites W2610600445 @default.
- W4382240498 cites W2795875919 @default.
- W4382240498 cites W2795959502 @default.
- W4382240498 cites W2799246381 @default.
- W4382240498 cites W2888128203 @default.
- W4382240498 cites W2888688605 @default.
- W4382240498 cites W2891923715 @default.
- W4382240498 cites W2999308857 @default.
- W4382240498 cites W3016600593 @default.
- W4382240498 cites W3092487423 @default.
- W4382240498 cites W3094137687 @default.
- W4382240498 cites W3129603726 @default.
- W4382240498 cites W3160987737 @default.
- W4382240498 cites W3176406313 @default.
- W4382240498 cites W4226142954 @default.
- W4382240498 cites W4235129393 @default.
- W4382240498 cites W4242094059 @default.
- W4382240498 cites W4247980034 @default.
- W4382240498 cites W4252979015 @default.
- W4382240498 cites W4255822078 @default.
- W4382240498 cites W4297965535 @default.
- W4382240498 cites W4312665440 @default.
- W4382240498 cites W4371593200 @default.
- W4382240498 doi "https://doi.org/10.1111/cgf.14826" @default.
- W4382240498 hasPublicationYear "2023" @default.
- W4382240498 type Work @default.
- W4382240498 citedByCount "0" @default.
- W4382240498 crossrefType "journal-article" @default.
- W4382240498 hasAuthorship W4382240498A5036300289 @default.
- W4382240498 hasBestOaLocation W43822404982 @default.
- W4382240498 hasConcept C105795698 @default.
- W4382240498 hasConcept C115961682 @default.
- W4382240498 hasConcept C119857082 @default.
- W4382240498 hasConcept C124101348 @default.
- W4382240498 hasConcept C154945302 @default.
- W4382240498 hasConcept C161584116 @default.
- W4382240498 hasConcept C167651023 @default.
- W4382240498 hasConcept C172367668 @default.
- W4382240498 hasConcept C190812933 @default.
- W4382240498 hasConcept C199163554 @default.
- W4382240498 hasConcept C205208641 @default.
- W4382240498 hasConcept C2777212361 @default.
- W4382240498 hasConcept C31462909 @default.
- W4382240498 hasConcept C33923547 @default.
- W4382240498 hasConcept C36464697 @default.
- W4382240498 hasConcept C41008148 @default.
- W4382240498 hasConcept C53533937 @default.
- W4382240498 hasConcept C60011546 @default.
- W4382240498 hasConceptScore W4382240498C105795698 @default.
- W4382240498 hasConceptScore W4382240498C115961682 @default.
- W4382240498 hasConceptScore W4382240498C119857082 @default.
- W4382240498 hasConceptScore W4382240498C124101348 @default.
- W4382240498 hasConceptScore W4382240498C154945302 @default.
- W4382240498 hasConceptScore W4382240498C161584116 @default.
- W4382240498 hasConceptScore W4382240498C167651023 @default.
- W4382240498 hasConceptScore W4382240498C172367668 @default.
- W4382240498 hasConceptScore W4382240498C190812933 @default.
- W4382240498 hasConceptScore W4382240498C199163554 @default.
- W4382240498 hasConceptScore W4382240498C205208641 @default.
- W4382240498 hasConceptScore W4382240498C2777212361 @default.
- W4382240498 hasConceptScore W4382240498C31462909 @default.
- W4382240498 hasConceptScore W4382240498C33923547 @default.
- W4382240498 hasConceptScore W4382240498C36464697 @default.
- W4382240498 hasConceptScore W4382240498C41008148 @default.