Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382242009> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4382242009 abstract "<p>The integration of artificial intelligence and science has resulted in substantial progress in computational chemistry methods for the design and discovery of novel catalysts. Nonetheless, the challenges of electrocatalytic reactions and developing a “large-scale language model” in catalysis persist, and the recent success of ChatGPT's(Chat Generative Pre-trained Transformer) few-shot methods surpassing BERT (Bidirectional Encoder Representation from Transformers) underscores the importance of addressing limited data, expensive computations, time constraints and structure-activity relationship in research. Hence, the development of few-shot techniques for catalysis is critical and essential, regardless of present and future requirements. This paper introduces the Few-Shot Open Catalyst Challenge 2023, a competition aimed at advancing the application of machine learning technology for predicting catalytic reactions on catalytic surfaces, with a specific focus on dual-atom catalysts in hydrogen peroxide electrocatalysis. To address the challenge of limited data in catalysis, we propose a machine learning approach based on MLP-Like and a framework called Catalysis Distillation Graph Neural Network (CDGNN).Our results demonstrate that CDGNN effectively learns embeddings from catalytic structures, enabling the capture of structure-adsorption relationships. This accomplishment has resulted in the utmost advanced and efficient determination of the reaction pathway for hydrogen peroxide, surpassing the current graph neural network approach by 16.1%. Consequently, CDGNN presents a promising approach for few-shot learning in catalysis. </p>" @default.
- W4382242009 created "2023-06-28" @default.
- W4382242009 creator A5073074012 @default.
- W4382242009 date "2023-06-27" @default.
- W4382242009 modified "2023-09-29" @default.
- W4382242009 title "Catalysis distillation neural network for the few-shot open catalyst challenge" @default.
- W4382242009 doi "https://doi.org/10.36227/techrxiv.23255357.v2" @default.
- W4382242009 hasPublicationYear "2023" @default.
- W4382242009 type Work @default.
- W4382242009 citedByCount "0" @default.
- W4382242009 crossrefType "posted-content" @default.
- W4382242009 hasAuthorship W4382242009A5073074012 @default.
- W4382242009 hasBestOaLocation W43822420091 @default.
- W4382242009 hasConcept C119857082 @default.
- W4382242009 hasConcept C127413603 @default.
- W4382242009 hasConcept C154945302 @default.
- W4382242009 hasConcept C161790260 @default.
- W4382242009 hasConcept C178790620 @default.
- W4382242009 hasConcept C183696295 @default.
- W4382242009 hasConcept C185592680 @default.
- W4382242009 hasConcept C41008148 @default.
- W4382242009 hasConcept C50644808 @default.
- W4382242009 hasConceptScore W4382242009C119857082 @default.
- W4382242009 hasConceptScore W4382242009C127413603 @default.
- W4382242009 hasConceptScore W4382242009C154945302 @default.
- W4382242009 hasConceptScore W4382242009C161790260 @default.
- W4382242009 hasConceptScore W4382242009C178790620 @default.
- W4382242009 hasConceptScore W4382242009C183696295 @default.
- W4382242009 hasConceptScore W4382242009C185592680 @default.
- W4382242009 hasConceptScore W4382242009C41008148 @default.
- W4382242009 hasConceptScore W4382242009C50644808 @default.
- W4382242009 hasLocation W43822420091 @default.
- W4382242009 hasLocation W43822420092 @default.
- W4382242009 hasLocation W43822420093 @default.
- W4382242009 hasOpenAccess W4382242009 @default.
- W4382242009 hasPrimaryLocation W43822420091 @default.
- W4382242009 hasRelatedWork W2748952813 @default.
- W4382242009 hasRelatedWork W2899084033 @default.
- W4382242009 hasRelatedWork W2961085424 @default.
- W4382242009 hasRelatedWork W3046775127 @default.
- W4382242009 hasRelatedWork W3170094116 @default.
- W4382242009 hasRelatedWork W4285260836 @default.
- W4382242009 hasRelatedWork W4286629047 @default.
- W4382242009 hasRelatedWork W4306321456 @default.
- W4382242009 hasRelatedWork W4306674287 @default.
- W4382242009 hasRelatedWork W4224009465 @default.
- W4382242009 isParatext "false" @default.
- W4382242009 isRetracted "false" @default.
- W4382242009 workType "article" @default.