Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382284724> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4382284724 endingPage "459" @default.
- W4382284724 startingPage "447" @default.
- W4382284724 abstract "The usage of wearable devices and smartphones is surging day by day, while most of them are equipped with Inertial Measurement Units (IMUs). IMUs can collect users’ private data and store and share it among different devices. The private data stored in mobile phones raises security concerns, which can be dealt with by user authentication mechanisms such as bio-metric. Therefore, a corrective authentication mechanism is required to ensure private data security. Gait analysis is one of the user authentication schemes. A gait authentication can be implemented using video and motion sensor data. Video data-based approaches are vulnerable because of the ease of imitating the videos, whereas the motion sensor data provide a more secure mechanism against attacks. This paper proposes a lightweight user gait authentication mechanism using motion sensor data collected using IMUs. Statistical features were extracted from the data of 15 users to model the authentication system and further employed a feature selection method to select the best features describing the data to avoid a significant correlation between the features. Separate models were developed for each user by following the one versus rest approach using the features mentioned above. In the first experiment, the modelling problem was formulated as a one-class classification problem due to the high imbalance between each class. In the third experiment, for modelling each user’s authentication system, an equal number of data points were collected randomly from the remaining users to prepare a balanced dataset. Both second and third experiments were modelled as a binary classification problem. Results showed that the Support Vector Machine (SVM) obtained the best authentication performance in the third experiment. The mean Equal Error Rate (EER) of all the users was also minimum for the SVM model trained using the balanced data in the third experiment." @default.
- W4382284724 created "2023-06-28" @default.
- W4382284724 creator A5017904569 @default.
- W4382284724 creator A5035983504 @default.
- W4382284724 creator A5037692978 @default.
- W4382284724 creator A5046965565 @default.
- W4382284724 date "2023-01-01" @default.
- W4382284724 modified "2023-09-25" @default.
- W4382284724 title "Continuous Authentication Using Gait Patterns" @default.
- W4382284724 cites W1568060748 @default.
- W4382284724 cites W2102950522 @default.
- W4382284724 cites W2121839284 @default.
- W4382284724 cites W2289015916 @default.
- W4382284724 cites W2290180986 @default.
- W4382284724 cites W2290864513 @default.
- W4382284724 cites W2768062547 @default.
- W4382284724 cites W2786535488 @default.
- W4382284724 cites W2940399137 @default.
- W4382284724 cites W3030294612 @default.
- W4382284724 cites W3040736388 @default.
- W4382284724 cites W3081356541 @default.
- W4382284724 cites W3083914698 @default.
- W4382284724 cites W3084261840 @default.
- W4382284724 cites W3095708440 @default.
- W4382284724 cites W3149756328 @default.
- W4382284724 cites W3211549832 @default.
- W4382284724 cites W3216409405 @default.
- W4382284724 cites W4200000960 @default.
- W4382284724 cites W4200197671 @default.
- W4382284724 cites W4205755812 @default.
- W4382284724 cites W4205923095 @default.
- W4382284724 cites W4205970933 @default.
- W4382284724 cites W4210503447 @default.
- W4382284724 cites W4224997531 @default.
- W4382284724 doi "https://doi.org/10.1007/978-981-99-1410-4_37" @default.
- W4382284724 hasPublicationYear "2023" @default.
- W4382284724 type Work @default.
- W4382284724 citedByCount "0" @default.
- W4382284724 crossrefType "book-chapter" @default.
- W4382284724 hasAuthorship W4382284724A5017904569 @default.
- W4382284724 hasAuthorship W4382284724A5035983504 @default.
- W4382284724 hasAuthorship W4382284724A5037692978 @default.
- W4382284724 hasAuthorship W4382284724A5046965565 @default.
- W4382284724 hasConcept C124101348 @default.
- W4382284724 hasConcept C127413603 @default.
- W4382284724 hasConcept C148417208 @default.
- W4382284724 hasConcept C149635348 @default.
- W4382284724 hasConcept C150594956 @default.
- W4382284724 hasConcept C154945302 @default.
- W4382284724 hasConcept C176217482 @default.
- W4382284724 hasConcept C21547014 @default.
- W4382284724 hasConcept C38652104 @default.
- W4382284724 hasConcept C41008148 @default.
- W4382284724 hasConceptScore W4382284724C124101348 @default.
- W4382284724 hasConceptScore W4382284724C127413603 @default.
- W4382284724 hasConceptScore W4382284724C148417208 @default.
- W4382284724 hasConceptScore W4382284724C149635348 @default.
- W4382284724 hasConceptScore W4382284724C150594956 @default.
- W4382284724 hasConceptScore W4382284724C154945302 @default.
- W4382284724 hasConceptScore W4382284724C176217482 @default.
- W4382284724 hasConceptScore W4382284724C21547014 @default.
- W4382284724 hasConceptScore W4382284724C38652104 @default.
- W4382284724 hasConceptScore W4382284724C41008148 @default.
- W4382284724 hasLocation W43822847241 @default.
- W4382284724 hasOpenAccess W4382284724 @default.
- W4382284724 hasPrimaryLocation W43822847241 @default.
- W4382284724 hasRelatedWork W1490870806 @default.
- W4382284724 hasRelatedWork W2347219288 @default.
- W4382284724 hasRelatedWork W2348097614 @default.
- W4382284724 hasRelatedWork W2348925352 @default.
- W4382284724 hasRelatedWork W266446692 @default.
- W4382284724 hasRelatedWork W2764151937 @default.
- W4382284724 hasRelatedWork W2793020157 @default.
- W4382284724 hasRelatedWork W2795913521 @default.
- W4382284724 hasRelatedWork W2999645641 @default.
- W4382284724 hasRelatedWork W2594872145 @default.
- W4382284724 isParatext "false" @default.
- W4382284724 isRetracted "false" @default.
- W4382284724 workType "book-chapter" @default.