Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382289013> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4382289013 endingPage "520" @default.
- W4382289013 startingPage "509" @default.
- W4382289013 abstract "In order to enhance customer satisfaction, logistics management is a component of the supply chain process that organizes, carries out, and regulates the effective flow and storage of goods, services, and related information from the point of source to the site of consumption. Due to a number of factors, including liberalization, weaker state interference of transportation, alterations in customer behavior, technological innovations, business increasing power, and globalization of trading, determining the precise supply chain pricing remains a difficult problem. With this impetus, this paper seeks to predict the logistic pricing by proposing a “Quad Mount Fabricated Deep Fully Connected Neural Network (QMF-DFCNN)” that uses the supply chain pricing dataset retrieved from the KAGGLE machine-learning repository. The supply chain pricing dataset contains 32 features with 10,037 logistic details, which had been processed with incomplete values. The Quad Mount Fabricated Deep Fully Connected Neural Network initiates by performing exploratory data analysis and the data division is done at 80:20. The coding is implemented with Python through an Nvidia V100 GPU workstation with 30 training iterations subjected to a batch size of 64. The dataset has been subjected to all the regressors to examine the performance of logistic pricing prediction. Execution results portray that the Gradient boost regressor is with high RSquared Value. The dataset was exposed to a gradient boost regressor to extract the six important features. The gradient boost feature extracted dataset applied to a Deep Fully Connected Neural Network had designed with single input having six features, an output layer with pricing attribute and four dense layers with 10 nodes each. Experimental results show that the proposed Quad Mount Fabricated Deep Fully Connected Neural Network shows a minimum Mean Squared Error of 19.2135 and a maximum RSquared error of 0.984 when analyzed with all other regression models." @default.
- W4382289013 created "2023-06-28" @default.
- W4382289013 creator A5051640955 @default.
- W4382289013 creator A5052173305 @default.
- W4382289013 creator A5055127560 @default.
- W4382289013 creator A5064355731 @default.
- W4382289013 date "2023-01-01" @default.
- W4382289013 modified "2023-10-01" @default.
- W4382289013 title "Quad Mount Fabricated Deep Fully Connected Neural Network Based Logistic Pricing Prediction" @default.
- W4382289013 cites W2066653584 @default.
- W4382289013 cites W2067072670 @default.
- W4382289013 cites W2155653793 @default.
- W4382289013 cites W2171960770 @default.
- W4382289013 cites W2249895886 @default.
- W4382289013 cites W2287478264 @default.
- W4382289013 cites W2594204444 @default.
- W4382289013 cites W2810507576 @default.
- W4382289013 cites W2989240182 @default.
- W4382289013 cites W3109470735 @default.
- W4382289013 cites W3135053756 @default.
- W4382289013 doi "https://doi.org/10.1007/978-981-99-1203-2_43" @default.
- W4382289013 hasPublicationYear "2023" @default.
- W4382289013 type Work @default.
- W4382289013 citedByCount "0" @default.
- W4382289013 crossrefType "book-chapter" @default.
- W4382289013 hasAuthorship W4382289013A5051640955 @default.
- W4382289013 hasAuthorship W4382289013A5052173305 @default.
- W4382289013 hasAuthorship W4382289013A5055127560 @default.
- W4382289013 hasAuthorship W4382289013A5064355731 @default.
- W4382289013 hasConcept C108713360 @default.
- W4382289013 hasConcept C144133560 @default.
- W4382289013 hasConcept C154945302 @default.
- W4382289013 hasConcept C162853370 @default.
- W4382289013 hasConcept C41008148 @default.
- W4382289013 hasConcept C50644808 @default.
- W4382289013 hasConceptScore W4382289013C108713360 @default.
- W4382289013 hasConceptScore W4382289013C144133560 @default.
- W4382289013 hasConceptScore W4382289013C154945302 @default.
- W4382289013 hasConceptScore W4382289013C162853370 @default.
- W4382289013 hasConceptScore W4382289013C41008148 @default.
- W4382289013 hasConceptScore W4382289013C50644808 @default.
- W4382289013 hasLocation W43822890131 @default.
- W4382289013 hasOpenAccess W4382289013 @default.
- W4382289013 hasPrimaryLocation W43822890131 @default.
- W4382289013 hasRelatedWork W2358668433 @default.
- W4382289013 hasRelatedWork W2376932109 @default.
- W4382289013 hasRelatedWork W2382290278 @default.
- W4382289013 hasRelatedWork W2386387936 @default.
- W4382289013 hasRelatedWork W2390279801 @default.
- W4382289013 hasRelatedWork W2748952813 @default.
- W4382289013 hasRelatedWork W2899084033 @default.
- W4382289013 hasRelatedWork W4362499384 @default.
- W4382289013 hasRelatedWork W644753246 @default.
- W4382289013 hasRelatedWork W1629725936 @default.
- W4382289013 isParatext "false" @default.
- W4382289013 isRetracted "false" @default.
- W4382289013 workType "book-chapter" @default.