Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382312248> ?p ?o ?g. }
- W4382312248 endingPage "4595" @default.
- W4382312248 startingPage "4595" @default.
- W4382312248 abstract "Tool wear condition monitoring is an important component of mechanical processing automation, and accurately identifying the wear status of tools can improve processing quality and production efficiency. This paper studied a new deep learning model, to identify the wear status of tools. The force signal was transformed into a two-dimensional image using continuous wavelet transform (CWT), short-time Fourier transform (STFT), and Gramian angular summation field (GASF) methods. The generated images were then fed into the proposed convolutional neural network (CNN) model for further analysis. The calculation results show that the accuracy of tool wear state recognition proposed in this paper was above 90%, which was higher than the accuracy of AlexNet, ResNet, and other models. The accuracy of the images generated using the CWT method and identified with the CNN model was the highest, which is attributed to the fact that the CWT method can extract local features of an image and is less affected by noise. Comparing the precision and recall values of the model, it was verified that the image obtained by the CWT method had the highest accuracy in identifying tool wear state. These results demonstrate the potential advantages of using a force signal transformed into a two-dimensional image for tool wear state recognition and of applying CNN models in this area. They also indicate the wide application prospects of this method in industrial production." @default.
- W4382312248 created "2023-06-28" @default.
- W4382312248 creator A5004520838 @default.
- W4382312248 creator A5016774722 @default.
- W4382312248 creator A5022292402 @default.
- W4382312248 creator A5085142676 @default.
- W4382312248 date "2023-05-09" @default.
- W4382312248 modified "2023-09-26" @default.
- W4382312248 title "Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals" @default.
- W4382312248 cites W1964413357 @default.
- W4382312248 cites W1966754268 @default.
- W4382312248 cites W1990329334 @default.
- W4382312248 cites W1992156898 @default.
- W4382312248 cites W2040667075 @default.
- W4382312248 cites W2158415530 @default.
- W4382312248 cites W2416955957 @default.
- W4382312248 cites W2489173095 @default.
- W4382312248 cites W2521656013 @default.
- W4382312248 cites W2601486059 @default.
- W4382312248 cites W2771742198 @default.
- W4382312248 cites W2772727138 @default.
- W4382312248 cites W2900438754 @default.
- W4382312248 cites W2909751768 @default.
- W4382312248 cites W2950380591 @default.
- W4382312248 cites W2955310096 @default.
- W4382312248 cites W2962414238 @default.
- W4382312248 cites W2987840306 @default.
- W4382312248 cites W2994578999 @default.
- W4382312248 cites W2997493799 @default.
- W4382312248 cites W3010371036 @default.
- W4382312248 cites W3043899764 @default.
- W4382312248 cites W3090279272 @default.
- W4382312248 cites W3090316098 @default.
- W4382312248 cites W3092326056 @default.
- W4382312248 cites W3095391890 @default.
- W4382312248 cites W3176449796 @default.
- W4382312248 cites W4200385936 @default.
- W4382312248 cites W4220916339 @default.
- W4382312248 cites W4221137473 @default.
- W4382312248 cites W4229077450 @default.
- W4382312248 cites W4307939236 @default.
- W4382312248 doi "https://doi.org/10.3390/s23104595" @default.
- W4382312248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37430508" @default.
- W4382312248 hasPublicationYear "2023" @default.
- W4382312248 type Work @default.
- W4382312248 citedByCount "0" @default.
- W4382312248 crossrefType "journal-article" @default.
- W4382312248 hasAuthorship W4382312248A5004520838 @default.
- W4382312248 hasAuthorship W4382312248A5016774722 @default.
- W4382312248 hasAuthorship W4382312248A5022292402 @default.
- W4382312248 hasAuthorship W4382312248A5085142676 @default.
- W4382312248 hasBestOaLocation W43823122481 @default.
- W4382312248 hasConcept C102519508 @default.
- W4382312248 hasConcept C108583219 @default.
- W4382312248 hasConcept C115901376 @default.
- W4382312248 hasConcept C115961682 @default.
- W4382312248 hasConcept C127413603 @default.
- W4382312248 hasConcept C134306372 @default.
- W4382312248 hasConcept C153180895 @default.
- W4382312248 hasConcept C154945302 @default.
- W4382312248 hasConcept C166386157 @default.
- W4382312248 hasConcept C196216189 @default.
- W4382312248 hasConcept C203024314 @default.
- W4382312248 hasConcept C31972630 @default.
- W4382312248 hasConcept C33923547 @default.
- W4382312248 hasConcept C41008148 @default.
- W4382312248 hasConcept C46286280 @default.
- W4382312248 hasConcept C47432892 @default.
- W4382312248 hasConcept C78519656 @default.
- W4382312248 hasConcept C81363708 @default.
- W4382312248 hasConcept C95722684 @default.
- W4382312248 hasConcept C99498987 @default.
- W4382312248 hasConceptScore W4382312248C102519508 @default.
- W4382312248 hasConceptScore W4382312248C108583219 @default.
- W4382312248 hasConceptScore W4382312248C115901376 @default.
- W4382312248 hasConceptScore W4382312248C115961682 @default.
- W4382312248 hasConceptScore W4382312248C127413603 @default.
- W4382312248 hasConceptScore W4382312248C134306372 @default.
- W4382312248 hasConceptScore W4382312248C153180895 @default.
- W4382312248 hasConceptScore W4382312248C154945302 @default.
- W4382312248 hasConceptScore W4382312248C166386157 @default.
- W4382312248 hasConceptScore W4382312248C196216189 @default.
- W4382312248 hasConceptScore W4382312248C203024314 @default.
- W4382312248 hasConceptScore W4382312248C31972630 @default.
- W4382312248 hasConceptScore W4382312248C33923547 @default.
- W4382312248 hasConceptScore W4382312248C41008148 @default.
- W4382312248 hasConceptScore W4382312248C46286280 @default.
- W4382312248 hasConceptScore W4382312248C47432892 @default.
- W4382312248 hasConceptScore W4382312248C78519656 @default.
- W4382312248 hasConceptScore W4382312248C81363708 @default.
- W4382312248 hasConceptScore W4382312248C95722684 @default.
- W4382312248 hasConceptScore W4382312248C99498987 @default.
- W4382312248 hasIssue "10" @default.
- W4382312248 hasLocation W43823122481 @default.
- W4382312248 hasLocation W43823122482 @default.
- W4382312248 hasLocation W43823122483 @default.
- W4382312248 hasOpenAccess W4382312248 @default.
- W4382312248 hasPrimaryLocation W43823122481 @default.