Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382316452> ?p ?o ?g. }
- W4382316452 abstract "Accurate models with low computational times are required to predict the consequences of fluvial floods in real-time. Even though detailed hydraulic models can predict flood water levels and corresponding inundation extents with high accuracy, their computational times limit their applicability to being used as a flood early-warning system. Therefore, conceptual models were developed in the literature for many years. These types of models do not attempt to represent the complex dynamic flood generation processes but are based on simplified hydraulic concepts, generally only using a digital elevation model as input. However, a shift in this research field is currently present from conceptual models to data-driven models, and more specifically to neural networks. This paper discusses the benefits and drawbacks of both modelling approaches and speculates which method is most promising to be used as a flood warning system to predict the consequences of fluvial floods in real-time." @default.
- W4382316452 created "2023-06-28" @default.
- W4382316452 creator A5034759142 @default.
- W4382316452 creator A5073273274 @default.
- W4382316452 date "2023-05-12" @default.
- W4382316452 modified "2023-09-25" @default.
- W4382316452 title "Neural networks for fast fluvial flood predictions: Too good to be true?" @default.
- W4382316452 cites W1175502716 @default.
- W4382316452 cites W1528483814 @default.
- W4382316452 cites W1989543665 @default.
- W4382316452 cites W1996374865 @default.
- W4382316452 cites W2034872353 @default.
- W4382316452 cites W2045811506 @default.
- W4382316452 cites W2080998408 @default.
- W4382316452 cites W2088733802 @default.
- W4382316452 cites W2111051539 @default.
- W4382316452 cites W2133677532 @default.
- W4382316452 cites W2137983211 @default.
- W4382316452 cites W2164017619 @default.
- W4382316452 cites W2266636151 @default.
- W4382316452 cites W2401090185 @default.
- W4382316452 cites W2593388048 @default.
- W4382316452 cites W2623181128 @default.
- W4382316452 cites W2802559009 @default.
- W4382316452 cites W2889135933 @default.
- W4382316452 cites W2899283552 @default.
- W4382316452 cites W2907891425 @default.
- W4382316452 cites W2911944093 @default.
- W4382316452 cites W2937998640 @default.
- W4382316452 cites W2983347364 @default.
- W4382316452 cites W2988892668 @default.
- W4382316452 cites W2991637229 @default.
- W4382316452 cites W3024645822 @default.
- W4382316452 cites W3047444846 @default.
- W4382316452 cites W3083014107 @default.
- W4382316452 cites W3090026492 @default.
- W4382316452 cites W3132961215 @default.
- W4382316452 cites W3168010246 @default.
- W4382316452 cites W3185142877 @default.
- W4382316452 cites W4200569373 @default.
- W4382316452 cites W4212988627 @default.
- W4382316452 cites W4220717841 @default.
- W4382316452 cites W4221149253 @default.
- W4382316452 cites W4320039773 @default.
- W4382316452 cites W9372687 @default.
- W4382316452 doi "https://doi.org/10.1002/rra.4144" @default.
- W4382316452 hasPublicationYear "2023" @default.
- W4382316452 type Work @default.
- W4382316452 citedByCount "1" @default.
- W4382316452 countsByYear W43823164522023 @default.
- W4382316452 crossrefType "journal-article" @default.
- W4382316452 hasAuthorship W4382316452A5034759142 @default.
- W4382316452 hasAuthorship W4382316452A5073273274 @default.
- W4382316452 hasBestOaLocation W43823164521 @default.
- W4382316452 hasConcept C109007969 @default.
- W4382316452 hasConcept C112959462 @default.
- W4382316452 hasConcept C114793014 @default.
- W4382316452 hasConcept C124101348 @default.
- W4382316452 hasConcept C126197015 @default.
- W4382316452 hasConcept C127313418 @default.
- W4382316452 hasConcept C13606891 @default.
- W4382316452 hasConcept C154945302 @default.
- W4382316452 hasConcept C166957645 @default.
- W4382316452 hasConcept C181843262 @default.
- W4382316452 hasConcept C187320778 @default.
- W4382316452 hasConcept C202444582 @default.
- W4382316452 hasConcept C205649164 @default.
- W4382316452 hasConcept C2778924419 @default.
- W4382316452 hasConcept C29825287 @default.
- W4382316452 hasConcept C33923547 @default.
- W4382316452 hasConcept C39432304 @default.
- W4382316452 hasConcept C41008148 @default.
- W4382316452 hasConcept C49204034 @default.
- W4382316452 hasConcept C50644808 @default.
- W4382316452 hasConcept C62649853 @default.
- W4382316452 hasConcept C74256435 @default.
- W4382316452 hasConcept C76155785 @default.
- W4382316452 hasConcept C76886044 @default.
- W4382316452 hasConcept C77088390 @default.
- W4382316452 hasConcept C9652623 @default.
- W4382316452 hasConceptScore W4382316452C109007969 @default.
- W4382316452 hasConceptScore W4382316452C112959462 @default.
- W4382316452 hasConceptScore W4382316452C114793014 @default.
- W4382316452 hasConceptScore W4382316452C124101348 @default.
- W4382316452 hasConceptScore W4382316452C126197015 @default.
- W4382316452 hasConceptScore W4382316452C127313418 @default.
- W4382316452 hasConceptScore W4382316452C13606891 @default.
- W4382316452 hasConceptScore W4382316452C154945302 @default.
- W4382316452 hasConceptScore W4382316452C166957645 @default.
- W4382316452 hasConceptScore W4382316452C181843262 @default.
- W4382316452 hasConceptScore W4382316452C187320778 @default.
- W4382316452 hasConceptScore W4382316452C202444582 @default.
- W4382316452 hasConceptScore W4382316452C205649164 @default.
- W4382316452 hasConceptScore W4382316452C2778924419 @default.
- W4382316452 hasConceptScore W4382316452C29825287 @default.
- W4382316452 hasConceptScore W4382316452C33923547 @default.
- W4382316452 hasConceptScore W4382316452C39432304 @default.
- W4382316452 hasConceptScore W4382316452C41008148 @default.
- W4382316452 hasConceptScore W4382316452C49204034 @default.
- W4382316452 hasConceptScore W4382316452C50644808 @default.