Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382318504> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4382318504 endingPage "15723" @default.
- W4382318504 startingPage "15717" @default.
- W4382318504 abstract "Cold temperatures during fall and spring have the potential to cause frost damage to grapevines and other fruit plants, which can significantly decrease harvest yields. To help prevent these losses, farmers deploy expensive frost mitigation measures, such as, sprinklers, heaters, and wind machines, when they judge that damage may occur. This judgment, however, is challenging because the cold hardiness of plants changes throughout the dormancy period and it is difficult to directly measure. This has led scientists to develop cold hardiness prediction models that can be tuned to different grape cultivars based on laborious field measurement data. In this paper, we study whether deep-learning models can improve cold hardiness prediction for grapes based on data that has been collected over a 30-year time period. A key challenge is that the amount of data per cultivar is highly variable, with some cultivars having only a small amount. For this purpose, we investigate the use of multi-task learning to leverage data across cultivars in order to improve prediction performance for individual cultivars. We evaluate a number of multi-task learning approaches and show that the highest performing approach is able to significantly improve over learning for single cultivars and outperforms the current state-of-the-art scientific model for most cultivars." @default.
- W4382318504 created "2023-06-28" @default.
- W4382318504 creator A5005360405 @default.
- W4382318504 creator A5030052689 @default.
- W4382318504 creator A5032977337 @default.
- W4382318504 creator A5061223981 @default.
- W4382318504 creator A5063351908 @default.
- W4382318504 creator A5071259293 @default.
- W4382318504 date "2023-06-26" @default.
- W4382318504 modified "2023-10-16" @default.
- W4382318504 title "Grape Cold Hardiness Prediction via Multi-Task Learning" @default.
- W4382318504 doi "https://doi.org/10.1609/aaai.v37i13.26865" @default.
- W4382318504 hasPublicationYear "2023" @default.
- W4382318504 type Work @default.
- W4382318504 citedByCount "0" @default.
- W4382318504 crossrefType "journal-article" @default.
- W4382318504 hasAuthorship W4382318504A5005360405 @default.
- W4382318504 hasAuthorship W4382318504A5030052689 @default.
- W4382318504 hasAuthorship W4382318504A5032977337 @default.
- W4382318504 hasAuthorship W4382318504A5061223981 @default.
- W4382318504 hasAuthorship W4382318504A5063351908 @default.
- W4382318504 hasAuthorship W4382318504A5071259293 @default.
- W4382318504 hasBestOaLocation W43823185041 @default.
- W4382318504 hasConcept C100701293 @default.
- W4382318504 hasConcept C119857082 @default.
- W4382318504 hasConcept C127413603 @default.
- W4382318504 hasConcept C144027150 @default.
- W4382318504 hasConcept C153083717 @default.
- W4382318504 hasConcept C153294291 @default.
- W4382318504 hasConcept C197321923 @default.
- W4382318504 hasConcept C205649164 @default.
- W4382318504 hasConcept C2780390811 @default.
- W4382318504 hasConcept C3527866 @default.
- W4382318504 hasConcept C39432304 @default.
- W4382318504 hasConcept C41008148 @default.
- W4382318504 hasConcept C4988496 @default.
- W4382318504 hasConcept C86803240 @default.
- W4382318504 hasConcept C88463610 @default.
- W4382318504 hasConceptScore W4382318504C100701293 @default.
- W4382318504 hasConceptScore W4382318504C119857082 @default.
- W4382318504 hasConceptScore W4382318504C127413603 @default.
- W4382318504 hasConceptScore W4382318504C144027150 @default.
- W4382318504 hasConceptScore W4382318504C153083717 @default.
- W4382318504 hasConceptScore W4382318504C153294291 @default.
- W4382318504 hasConceptScore W4382318504C197321923 @default.
- W4382318504 hasConceptScore W4382318504C205649164 @default.
- W4382318504 hasConceptScore W4382318504C2780390811 @default.
- W4382318504 hasConceptScore W4382318504C3527866 @default.
- W4382318504 hasConceptScore W4382318504C39432304 @default.
- W4382318504 hasConceptScore W4382318504C41008148 @default.
- W4382318504 hasConceptScore W4382318504C4988496 @default.
- W4382318504 hasConceptScore W4382318504C86803240 @default.
- W4382318504 hasConceptScore W4382318504C88463610 @default.
- W4382318504 hasIssue "13" @default.
- W4382318504 hasLocation W43823185041 @default.
- W4382318504 hasOpenAccess W4382318504 @default.
- W4382318504 hasPrimaryLocation W43823185041 @default.
- W4382318504 hasRelatedWork W1972013730 @default.
- W4382318504 hasRelatedWork W2186529276 @default.
- W4382318504 hasRelatedWork W2358041052 @default.
- W4382318504 hasRelatedWork W2547631796 @default.
- W4382318504 hasRelatedWork W2560621527 @default.
- W4382318504 hasRelatedWork W2742618908 @default.
- W4382318504 hasRelatedWork W3114770587 @default.
- W4382318504 hasRelatedWork W3177445151 @default.
- W4382318504 hasRelatedWork W4226293419 @default.
- W4382318504 hasRelatedWork W4313299025 @default.
- W4382318504 hasVolume "37" @default.
- W4382318504 isParatext "false" @default.
- W4382318504 isRetracted "false" @default.
- W4382318504 workType "article" @default.