Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382320005> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4382320005 endingPage "2106" @default.
- W4382320005 startingPage "2106" @default.
- W4382320005 abstract "Currently, most recommendation algorithms only use a single type of user behavior information to predict the target behavior. However, when browsing and selecting items, users generate other types of behavior information, which is important, but often not analyzed or modeled by traditional recommendation algorithms. This study aims to design a multi-behavior recommendation algorithm based on graph neural networks by analyzing multiple types of behavior information in users’ product purchasing process, to fully utilize multiple types of user behavior information. The algorithm models users, items, and user behavior in multiple dimensions by incorporating attention mechanisms and multi-behavior learning into graph neural networks, and solves the problem of imbalanced user behavior weights from the perspective of multi-task loss optimization. After experimental verification, we proposed that the multi-behavior graph attention network (MGAT) algorithm has better performance compared to four other classical recommendation algorithms on the Beibei and Taobao datasets. The results demonstrate that the multi-behavior recommendation algorithm based on graph neural networks has practicality in fully utilizing multiple types of user information, and can solve the problem of imbalanced user behavior weights to some extent." @default.
- W4382320005 created "2023-06-28" @default.
- W4382320005 creator A5009807039 @default.
- W4382320005 creator A5036720049 @default.
- W4382320005 creator A5079869878 @default.
- W4382320005 date "2023-05-04" @default.
- W4382320005 modified "2023-10-05" @default.
- W4382320005 title "Research on Efficient Multi-Behavior Recommendation Method Fused with Graph Neural Network" @default.
- W4382320005 cites W1806220264 @default.
- W4382320005 cites W2054141820 @default.
- W4382320005 cites W2064754513 @default.
- W4382320005 cites W2067455409 @default.
- W4382320005 cites W2104251359 @default.
- W4382320005 cites W2112796928 @default.
- W4382320005 cites W2117420919 @default.
- W4382320005 cites W2120130576 @default.
- W4382320005 cites W2515144511 @default.
- W4382320005 cites W2517217469 @default.
- W4382320005 cites W2517363309 @default.
- W4382320005 cites W2739671343 @default.
- W4382320005 cites W2795397937 @default.
- W4382320005 cites W2798385737 @default.
- W4382320005 cites W2798881875 @default.
- W4382320005 cites W2808446163 @default.
- W4382320005 cites W2948035163 @default.
- W4382320005 cites W2951369132 @default.
- W4382320005 cites W2963430933 @default.
- W4382320005 cites W2984239289 @default.
- W4382320005 cites W2997342017 @default.
- W4382320005 cites W3035287707 @default.
- W4382320005 cites W3045200674 @default.
- W4382320005 cites W3093862905 @default.
- W4382320005 cites W3099825604 @default.
- W4382320005 cites W3100278010 @default.
- W4382320005 cites W3100848837 @default.
- W4382320005 cites W3171705101 @default.
- W4382320005 cites W3175450343 @default.
- W4382320005 cites W3176294187 @default.
- W4382320005 cites W4296526511 @default.
- W4382320005 cites W4311390919 @default.
- W4382320005 cites W4315977496 @default.
- W4382320005 cites W4323317171 @default.
- W4382320005 doi "https://doi.org/10.3390/electronics12092106" @default.
- W4382320005 hasPublicationYear "2023" @default.
- W4382320005 type Work @default.
- W4382320005 citedByCount "0" @default.
- W4382320005 crossrefType "journal-article" @default.
- W4382320005 hasAuthorship W4382320005A5009807039 @default.
- W4382320005 hasAuthorship W4382320005A5036720049 @default.
- W4382320005 hasAuthorship W4382320005A5079869878 @default.
- W4382320005 hasBestOaLocation W43823200051 @default.
- W4382320005 hasConcept C119857082 @default.
- W4382320005 hasConcept C124101348 @default.
- W4382320005 hasConcept C12713177 @default.
- W4382320005 hasConcept C132525143 @default.
- W4382320005 hasConcept C154945302 @default.
- W4382320005 hasConcept C162324750 @default.
- W4382320005 hasConcept C21547014 @default.
- W4382320005 hasConcept C2778813691 @default.
- W4382320005 hasConcept C41008148 @default.
- W4382320005 hasConcept C50644808 @default.
- W4382320005 hasConcept C557471498 @default.
- W4382320005 hasConcept C80444323 @default.
- W4382320005 hasConceptScore W4382320005C119857082 @default.
- W4382320005 hasConceptScore W4382320005C124101348 @default.
- W4382320005 hasConceptScore W4382320005C12713177 @default.
- W4382320005 hasConceptScore W4382320005C132525143 @default.
- W4382320005 hasConceptScore W4382320005C154945302 @default.
- W4382320005 hasConceptScore W4382320005C162324750 @default.
- W4382320005 hasConceptScore W4382320005C21547014 @default.
- W4382320005 hasConceptScore W4382320005C2778813691 @default.
- W4382320005 hasConceptScore W4382320005C41008148 @default.
- W4382320005 hasConceptScore W4382320005C50644808 @default.
- W4382320005 hasConceptScore W4382320005C557471498 @default.
- W4382320005 hasConceptScore W4382320005C80444323 @default.
- W4382320005 hasIssue "9" @default.
- W4382320005 hasLocation W43823200051 @default.
- W4382320005 hasOpenAccess W4382320005 @default.
- W4382320005 hasPrimaryLocation W43823200051 @default.
- W4382320005 hasRelatedWork W2150182025 @default.
- W4382320005 hasRelatedWork W2351217280 @default.
- W4382320005 hasRelatedWork W2418190244 @default.
- W4382320005 hasRelatedWork W3092950680 @default.
- W4382320005 hasRelatedWork W3125580266 @default.
- W4382320005 hasRelatedWork W3197542405 @default.
- W4382320005 hasRelatedWork W4238861846 @default.
- W4382320005 hasRelatedWork W4246980185 @default.
- W4382320005 hasRelatedWork W4317039510 @default.
- W4382320005 hasRelatedWork W4386781444 @default.
- W4382320005 hasVolume "12" @default.
- W4382320005 isParatext "false" @default.
- W4382320005 isRetracted "false" @default.
- W4382320005 workType "article" @default.