Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382360135> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4382360135 endingPage "106612" @default.
- W4382360135 startingPage "106612" @default.
- W4382360135 abstract "With the growing complexity of onboard sensors and the widespread deployment of road sensors, deep learning enables fine-grained traffic prediction using massive amounts of raw traffic data, which facilitates accurate analysis of traffic information in the Internet of Vehicles (IoV). However, most existing studies focus on using all the local data to jointly build a prediction model, facing severe challenges of data security and privacy concerns as well as substantial communication overhead. To address these challenges, in this paper, we propose the Spatial-Temporal Traffic Prediction Network based on federated learning (F-STTP-Net), which only updates the model parameters to the centralized server without any private data. Firstly, we design a sub-area division method, which divides the road network into sub-areas with different macroscopic fundamental diagram properties. Then, we propose a local training model for each sub-area, which uses the graph attention network (GAT) and the long short-term memory (LSTM) to capture the spatio-temporal dependence of the road network. The model uses the branch structure to predict the traffic volume of each intersection in the sub-area. Finally, the local models are aggregated based on federated learning to form a powerful central model, which bridges the constraints on global data sharing and privacy guarantee. We conduct experiments on the real-life dataset in Xuchang Lotus Lake 5G automated vehicles demonstration area to demonstrate that F-STTP-Net can achieve excellent prediction performance without the interaction of sub-area raw data. In addition, the proposed model has a strong generalization ability and can be quickly transferred to a new sub-area." @default.
- W4382360135 created "2023-06-29" @default.
- W4382360135 creator A5000851572 @default.
- W4382360135 creator A5019111566 @default.
- W4382360135 creator A5029312957 @default.
- W4382360135 creator A5056461571 @default.
- W4382360135 creator A5057174728 @default.
- W4382360135 creator A5084563249 @default.
- W4382360135 date "2023-10-01" @default.
- W4382360135 modified "2023-10-17" @default.
- W4382360135 title "Train a central traffic prediction model using local data: A spatio-temporal network based on federated learning" @default.
- W4382360135 cites W1971421925 @default.
- W4382360135 cites W1991401171 @default.
- W4382360135 cites W2064675550 @default.
- W4382360135 cites W2073640212 @default.
- W4382360135 cites W2090192376 @default.
- W4382360135 cites W2132711183 @default.
- W4382360135 cites W2171234954 @default.
- W4382360135 cites W2565420248 @default.
- W4382360135 cites W2593182953 @default.
- W4382360135 cites W2789788750 @default.
- W4382360135 cites W2807894308 @default.
- W4382360135 cites W2901504064 @default.
- W4382360135 cites W2912213068 @default.
- W4382360135 cites W2918899415 @default.
- W4382360135 cites W2921685418 @default.
- W4382360135 cites W2951832089 @default.
- W4382360135 cites W2996845627 @default.
- W4382360135 cites W2996919856 @default.
- W4382360135 cites W2999301586 @default.
- W4382360135 cites W3001523552 @default.
- W4382360135 cites W3010852232 @default.
- W4382360135 cites W3126441351 @default.
- W4382360135 cites W3157990341 @default.
- W4382360135 doi "https://doi.org/10.1016/j.engappai.2023.106612" @default.
- W4382360135 hasPublicationYear "2023" @default.
- W4382360135 type Work @default.
- W4382360135 citedByCount "0" @default.
- W4382360135 crossrefType "journal-article" @default.
- W4382360135 hasAuthorship W4382360135A5000851572 @default.
- W4382360135 hasAuthorship W4382360135A5019111566 @default.
- W4382360135 hasAuthorship W4382360135A5029312957 @default.
- W4382360135 hasAuthorship W4382360135A5056461571 @default.
- W4382360135 hasAuthorship W4382360135A5057174728 @default.
- W4382360135 hasAuthorship W4382360135A5084563249 @default.
- W4382360135 hasConcept C105339364 @default.
- W4382360135 hasConcept C108583219 @default.
- W4382360135 hasConcept C111919701 @default.
- W4382360135 hasConcept C119857082 @default.
- W4382360135 hasConcept C120314980 @default.
- W4382360135 hasConcept C124101348 @default.
- W4382360135 hasConcept C127413603 @default.
- W4382360135 hasConcept C132964779 @default.
- W4382360135 hasConcept C146978453 @default.
- W4382360135 hasConcept C154945302 @default.
- W4382360135 hasConcept C199360897 @default.
- W4382360135 hasConcept C2779960059 @default.
- W4382360135 hasConcept C41008148 @default.
- W4382360135 hasConcept C64543145 @default.
- W4382360135 hasConceptScore W4382360135C105339364 @default.
- W4382360135 hasConceptScore W4382360135C108583219 @default.
- W4382360135 hasConceptScore W4382360135C111919701 @default.
- W4382360135 hasConceptScore W4382360135C119857082 @default.
- W4382360135 hasConceptScore W4382360135C120314980 @default.
- W4382360135 hasConceptScore W4382360135C124101348 @default.
- W4382360135 hasConceptScore W4382360135C127413603 @default.
- W4382360135 hasConceptScore W4382360135C132964779 @default.
- W4382360135 hasConceptScore W4382360135C146978453 @default.
- W4382360135 hasConceptScore W4382360135C154945302 @default.
- W4382360135 hasConceptScore W4382360135C199360897 @default.
- W4382360135 hasConceptScore W4382360135C2779960059 @default.
- W4382360135 hasConceptScore W4382360135C41008148 @default.
- W4382360135 hasConceptScore W4382360135C64543145 @default.
- W4382360135 hasFunder F4320325902 @default.
- W4382360135 hasFunder F4320335777 @default.
- W4382360135 hasFunder F4320336026 @default.
- W4382360135 hasLocation W43823601351 @default.
- W4382360135 hasOpenAccess W4382360135 @default.
- W4382360135 hasPrimaryLocation W43823601351 @default.
- W4382360135 hasRelatedWork W3014300295 @default.
- W4382360135 hasRelatedWork W3164822677 @default.
- W4382360135 hasRelatedWork W4223943233 @default.
- W4382360135 hasRelatedWork W4225161397 @default.
- W4382360135 hasRelatedWork W4246751904 @default.
- W4382360135 hasRelatedWork W4312200629 @default.
- W4382360135 hasRelatedWork W4360585206 @default.
- W4382360135 hasRelatedWork W4364306694 @default.
- W4382360135 hasRelatedWork W4380075502 @default.
- W4382360135 hasRelatedWork W4380086463 @default.
- W4382360135 hasVolume "125" @default.
- W4382360135 isParatext "false" @default.
- W4382360135 isRetracted "false" @default.
- W4382360135 workType "article" @default.