Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382361520> ?p ?o ?g. }
- W4382361520 endingPage "100138" @default.
- W4382361520 startingPage "100138" @default.
- W4382361520 abstract "In order to overcome the complex mathematical models and tedious analytical skills and improve the machining performance, various effective methods have been developed using time domain, frequency domain and time and frequency domain-based features. However, the selection of these features can be difficult, and results can be alleviated if it is wrongly selected. This study proposes a methodology that helps identify the optimal feature from eight time-domain statistical features using supervised machine learning algorithms. In this work, 44 milling experiments have been performed and labelled as chatter, transient, and stable states by observing the tool-machining condition. Subsequently, the eight time-domain-based features, i.e. mean, variance, peak-to-peak, root mean square, crest factor, form factor, kurtosis and skewness, have been calculated. After that, four machine learning techniques, i.e., random forest, gradient boosting, support vector machine and logistic regression, were utilized, and their accuracy score was 92.86%, 96.8%, 94.8% and 91%, respectively. After that, their feature score was evaluated to investigate the effectiveness of all 8 time domain-based features. Feature scores for mean, variance, peak-to-peak, root mean square, crest factor, form factor, kurtosis and skewness are 0.28, 0.25, 0.11, 0.095, 0.085, 0.08, 0.065 and 0.035, respectively. The outcome of this research is that peak-to-peak time domain-based features, along with gradient boosting, can extract chatter features in the presence of an extraneous noisy signal." @default.
- W4382361520 created "2023-06-29" @default.
- W4382361520 creator A5023286293 @default.
- W4382361520 creator A5025160354 @default.
- W4382361520 creator A5066954864 @default.
- W4382361520 creator A5088243862 @default.
- W4382361520 creator A5092348662 @default.
- W4382361520 date "2023-06-01" @default.
- W4382361520 modified "2023-09-26" @default.
- W4382361520 title "Investigation of optimal feature for milling chatter identification using supervised machine learning techniques" @default.
- W4382361520 cites W2014693879 @default.
- W4382361520 cites W2027666102 @default.
- W4382361520 cites W2036079977 @default.
- W4382361520 cites W2568662015 @default.
- W4382361520 cites W2753935149 @default.
- W4382361520 cites W2774268753 @default.
- W4382361520 cites W2808011074 @default.
- W4382361520 cites W2907163532 @default.
- W4382361520 cites W2932006950 @default.
- W4382361520 cites W2957974989 @default.
- W4382361520 cites W2965403587 @default.
- W4382361520 cites W2979815326 @default.
- W4382361520 cites W2997531808 @default.
- W4382361520 cites W2998222719 @default.
- W4382361520 cites W3000815745 @default.
- W4382361520 cites W3003922920 @default.
- W4382361520 cites W3010282595 @default.
- W4382361520 cites W3018777674 @default.
- W4382361520 cites W3019525880 @default.
- W4382361520 cites W3036335076 @default.
- W4382361520 cites W3037488314 @default.
- W4382361520 cites W3049635623 @default.
- W4382361520 cites W3088084382 @default.
- W4382361520 cites W3117855709 @default.
- W4382361520 cites W3123850137 @default.
- W4382361520 cites W3134197363 @default.
- W4382361520 cites W3166412102 @default.
- W4382361520 cites W3197826612 @default.
- W4382361520 cites W4200490335 @default.
- W4382361520 cites W4207048637 @default.
- W4382361520 cites W4210294265 @default.
- W4382361520 cites W4281385148 @default.
- W4382361520 cites W4283771270 @default.
- W4382361520 cites W4287148492 @default.
- W4382361520 cites W4306769529 @default.
- W4382361520 cites W4311289381 @default.
- W4382361520 cites W4313475946 @default.
- W4382361520 cites W4313575270 @default.
- W4382361520 cites W4319026002 @default.
- W4382361520 cites W4322767250 @default.
- W4382361520 cites W4322773144 @default.
- W4382361520 cites W4327948292 @default.
- W4382361520 cites W4366828873 @default.
- W4382361520 cites W4377104271 @default.
- W4382361520 doi "https://doi.org/10.1016/j.jer.2023.100138" @default.
- W4382361520 hasPublicationYear "2023" @default.
- W4382361520 type Work @default.
- W4382361520 citedByCount "0" @default.
- W4382361520 crossrefType "journal-article" @default.
- W4382361520 hasAuthorship W4382361520A5023286293 @default.
- W4382361520 hasAuthorship W4382361520A5025160354 @default.
- W4382361520 hasAuthorship W4382361520A5066954864 @default.
- W4382361520 hasAuthorship W4382361520A5088243862 @default.
- W4382361520 hasAuthorship W4382361520A5092348662 @default.
- W4382361520 hasBestOaLocation W43823615201 @default.
- W4382361520 hasConcept C103824480 @default.
- W4382361520 hasConcept C105795698 @default.
- W4382361520 hasConcept C119599485 @default.
- W4382361520 hasConcept C119857082 @default.
- W4382361520 hasConcept C122342681 @default.
- W4382361520 hasConcept C12267149 @default.
- W4382361520 hasConcept C127413603 @default.
- W4382361520 hasConcept C138885662 @default.
- W4382361520 hasConcept C139945424 @default.
- W4382361520 hasConcept C148483581 @default.
- W4382361520 hasConcept C153180895 @default.
- W4382361520 hasConcept C154945302 @default.
- W4382361520 hasConcept C166963901 @default.
- W4382361520 hasConcept C169258074 @default.
- W4382361520 hasConcept C19118579 @default.
- W4382361520 hasConcept C2776257435 @default.
- W4382361520 hasConcept C2776401178 @default.
- W4382361520 hasConcept C31258907 @default.
- W4382361520 hasConcept C31972630 @default.
- W4382361520 hasConcept C33923547 @default.
- W4382361520 hasConcept C41008148 @default.
- W4382361520 hasConcept C41895202 @default.
- W4382361520 hasConcept C70153297 @default.
- W4382361520 hasConcept C71907059 @default.
- W4382361520 hasConcept C77659661 @default.
- W4382361520 hasConcept C8642999 @default.
- W4382361520 hasConceptScore W4382361520C103824480 @default.
- W4382361520 hasConceptScore W4382361520C105795698 @default.
- W4382361520 hasConceptScore W4382361520C119599485 @default.
- W4382361520 hasConceptScore W4382361520C119857082 @default.
- W4382361520 hasConceptScore W4382361520C122342681 @default.
- W4382361520 hasConceptScore W4382361520C12267149 @default.
- W4382361520 hasConceptScore W4382361520C127413603 @default.