Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382361851> ?p ?o ?g. }
- W4382361851 abstract "Abstract Most nonlinear vector autoregressive methods in the econometric literature are based on specific functional forms, such as the smooth transition autoregressive model. This study proposes a general form of the nonlinear vector autoregressive model based on global approximators, such as neural networks, Volterra, and Weiner series. The simulation results of 20 linear and nonlinear multivariate time series processes indicate that nonlinear vector autoregressive methods, especially multi‐output neural networks, are more accurate based on the root mean square error and model confidence set criteria. Applying the global approximator approach to a small‐scale macroeconometric model reveals that the new approach can improve forecast accuracy compared to linear and other nonlinear vector error correction models. In addition, forecasting the relevant variables in a typical exchange rate and monetary policy models based on nonlinear specifications gives more successful results than in the linear case." @default.
- W4382361851 created "2023-06-29" @default.
- W4382361851 creator A5015525103 @default.
- W4382361851 creator A5071941378 @default.
- W4382361851 date "2023-06-28" @default.
- W4382361851 modified "2023-10-14" @default.
- W4382361851 title "Forecast accuracy of the linear and nonlinear autoregressive models in macroeconomic modeling" @default.
- W4382361851 cites W1563269395 @default.
- W4382361851 cites W1568524886 @default.
- W4382361851 cites W1757980361 @default.
- W4382361851 cites W1922566989 @default.
- W4382361851 cites W1976557506 @default.
- W4382361851 cites W1977152366 @default.
- W4382361851 cites W1988563124 @default.
- W4382361851 cites W1988789713 @default.
- W4382361851 cites W1993498260 @default.
- W4382361851 cites W2019459021 @default.
- W4382361851 cites W2027197837 @default.
- W4382361851 cites W2029803196 @default.
- W4382361851 cites W2030587116 @default.
- W4382361851 cites W2034985991 @default.
- W4382361851 cites W2040503026 @default.
- W4382361851 cites W2047625924 @default.
- W4382361851 cites W2051934197 @default.
- W4382361851 cites W2052441401 @default.
- W4382361851 cites W2074812030 @default.
- W4382361851 cites W2118234389 @default.
- W4382361851 cites W2125536334 @default.
- W4382361851 cites W2137983211 @default.
- W4382361851 cites W2146904825 @default.
- W4382361851 cites W2150300006 @default.
- W4382361851 cites W2988084670 @default.
- W4382361851 cites W3121984463 @default.
- W4382361851 cites W3123747330 @default.
- W4382361851 cites W3123970111 @default.
- W4382361851 cites W3124444187 @default.
- W4382361851 cites W3124765495 @default.
- W4382361851 cites W4234328597 @default.
- W4382361851 cites W4243668324 @default.
- W4382361851 cites W94884745 @default.
- W4382361851 doi "https://doi.org/10.1002/for.3002" @default.
- W4382361851 hasPublicationYear "2023" @default.
- W4382361851 type Work @default.
- W4382361851 citedByCount "0" @default.
- W4382361851 crossrefType "journal-article" @default.
- W4382361851 hasAuthorship W4382361851A5015525103 @default.
- W4382361851 hasAuthorship W4382361851A5071941378 @default.
- W4382361851 hasConcept C105795698 @default.
- W4382361851 hasConcept C121332964 @default.
- W4382361851 hasConcept C133029050 @default.
- W4382361851 hasConcept C139945424 @default.
- W4382361851 hasConcept C143724316 @default.
- W4382361851 hasConcept C149782125 @default.
- W4382361851 hasConcept C151406439 @default.
- W4382361851 hasConcept C151730666 @default.
- W4382361851 hasConcept C158622935 @default.
- W4382361851 hasConcept C159877910 @default.
- W4382361851 hasConcept C163175372 @default.
- W4382361851 hasConcept C194657046 @default.
- W4382361851 hasConcept C24338571 @default.
- W4382361851 hasConcept C28826006 @default.
- W4382361851 hasConcept C30795276 @default.
- W4382361851 hasConcept C33923547 @default.
- W4382361851 hasConcept C41008148 @default.
- W4382361851 hasConcept C42536954 @default.
- W4382361851 hasConcept C62520636 @default.
- W4382361851 hasConcept C86803240 @default.
- W4382361851 hasConceptScore W4382361851C105795698 @default.
- W4382361851 hasConceptScore W4382361851C121332964 @default.
- W4382361851 hasConceptScore W4382361851C133029050 @default.
- W4382361851 hasConceptScore W4382361851C139945424 @default.
- W4382361851 hasConceptScore W4382361851C143724316 @default.
- W4382361851 hasConceptScore W4382361851C149782125 @default.
- W4382361851 hasConceptScore W4382361851C151406439 @default.
- W4382361851 hasConceptScore W4382361851C151730666 @default.
- W4382361851 hasConceptScore W4382361851C158622935 @default.
- W4382361851 hasConceptScore W4382361851C159877910 @default.
- W4382361851 hasConceptScore W4382361851C163175372 @default.
- W4382361851 hasConceptScore W4382361851C194657046 @default.
- W4382361851 hasConceptScore W4382361851C24338571 @default.
- W4382361851 hasConceptScore W4382361851C28826006 @default.
- W4382361851 hasConceptScore W4382361851C30795276 @default.
- W4382361851 hasConceptScore W4382361851C33923547 @default.
- W4382361851 hasConceptScore W4382361851C41008148 @default.
- W4382361851 hasConceptScore W4382361851C42536954 @default.
- W4382361851 hasConceptScore W4382361851C62520636 @default.
- W4382361851 hasConceptScore W4382361851C86803240 @default.
- W4382361851 hasLocation W43823618511 @default.
- W4382361851 hasOpenAccess W4382361851 @default.
- W4382361851 hasPrimaryLocation W43823618511 @default.
- W4382361851 hasRelatedWork W1547559323 @default.
- W4382361851 hasRelatedWork W1611117054 @default.
- W4382361851 hasRelatedWork W1988789713 @default.
- W4382361851 hasRelatedWork W2019155478 @default.
- W4382361851 hasRelatedWork W3123153965 @default.
- W4382361851 hasRelatedWork W3159365186 @default.
- W4382361851 hasRelatedWork W4238343629 @default.
- W4382361851 hasRelatedWork W4287185323 @default.
- W4382361851 hasRelatedWork W4320078083 @default.
- W4382361851 hasRelatedWork W4366145459 @default.