Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382364321> ?p ?o ?g. }
- W4382364321 endingPage "129011" @default.
- W4382364321 startingPage "129011" @default.
- W4382364321 abstract "Humans plan their movements mainly based on visual information. However, agents in few existing evacuation models perceive the environment by using visual information. To obtain the visual features of an individual in a discrete field, a Dynamic Scanning Algorithm (DSA) is proposed. DSA introduces the ray-scanning of LIDAR, a ”laser” is released by an agent to detect the nearest object that intersects it. By pre-storing the grids crossed by the rays, the efficiency of DSA is significantly improved. Using the scan results as inputs, an evacuation model has been developed based on the Deep Reinforcement Learning with Double Q-learning (DDQN). The parameters of DSA are calibrated at first, and a group of parameters with a good balance between efficiency and accuracy are recommended. Furthermore, the fundamental diagram is reproduced to calibrate the reward values in DDQN. At last, trajectories and behaviors in the model are studied by using the calibrated parameters. Results show that the movement trajectories are affected by visible distances and reward values, and some effectiveness are consistent with that in experiments. Besides, the exit selection behavior and the lane formation behavior are observed in simulation without introducing any special designed rules. DSA provides a new method to obtain the first-person environmental information in discrete field, and the DSA&DDQN based model defines a new ray-scan-based evacuation modeling scheme." @default.
- W4382364321 created "2023-06-29" @default.
- W4382364321 creator A5007314888 @default.
- W4382364321 creator A5020549988 @default.
- W4382364321 creator A5034909379 @default.
- W4382364321 creator A5043420818 @default.
- W4382364321 creator A5060243753 @default.
- W4382364321 creator A5063235838 @default.
- W4382364321 date "2023-09-01" @default.
- W4382364321 modified "2023-10-17" @default.
- W4382364321 title "Simulation of pedestrian evacuation with reinforcement learning based on a dynamic scanning algorithm" @default.
- W4382364321 cites W1688520048 @default.
- W4382364321 cites W1795298394 @default.
- W4382364321 cites W1973207443 @default.
- W4382364321 cites W1983672500 @default.
- W4382364321 cites W1993643921 @default.
- W4382364321 cites W1995225412 @default.
- W4382364321 cites W1999634162 @default.
- W4382364321 cites W2002883656 @default.
- W4382364321 cites W2011042166 @default.
- W4382364321 cites W2012980494 @default.
- W4382364321 cites W2018937623 @default.
- W4382364321 cites W2061512505 @default.
- W4382364321 cites W2073104694 @default.
- W4382364321 cites W2075421046 @default.
- W4382364321 cites W2088365967 @default.
- W4382364321 cites W2095862804 @default.
- W4382364321 cites W2098275374 @default.
- W4382364321 cites W2100242026 @default.
- W4382364321 cites W2101183386 @default.
- W4382364321 cites W2130632867 @default.
- W4382364321 cites W2156838542 @default.
- W4382364321 cites W2167052694 @default.
- W4382364321 cites W2746553466 @default.
- W4382364321 cites W2895968824 @default.
- W4382364321 cites W2899960484 @default.
- W4382364321 cites W2948349612 @default.
- W4382364321 cites W2964069458 @default.
- W4382364321 cites W3030560928 @default.
- W4382364321 cites W3111410027 @default.
- W4382364321 cites W3122375892 @default.
- W4382364321 cites W3131879247 @default.
- W4382364321 cites W3134990674 @default.
- W4382364321 cites W3194274823 @default.
- W4382364321 cites W3211072342 @default.
- W4382364321 doi "https://doi.org/10.1016/j.physa.2023.129011" @default.
- W4382364321 hasPublicationYear "2023" @default.
- W4382364321 type Work @default.
- W4382364321 citedByCount "0" @default.
- W4382364321 crossrefType "journal-article" @default.
- W4382364321 hasAuthorship W4382364321A5007314888 @default.
- W4382364321 hasAuthorship W4382364321A5020549988 @default.
- W4382364321 hasAuthorship W4382364321A5034909379 @default.
- W4382364321 hasAuthorship W4382364321A5043420818 @default.
- W4382364321 hasAuthorship W4382364321A5060243753 @default.
- W4382364321 hasAuthorship W4382364321A5063235838 @default.
- W4382364321 hasConcept C11413529 @default.
- W4382364321 hasConcept C120665830 @default.
- W4382364321 hasConcept C121332964 @default.
- W4382364321 hasConcept C127413603 @default.
- W4382364321 hasConcept C141349535 @default.
- W4382364321 hasConcept C154945302 @default.
- W4382364321 hasConcept C166957645 @default.
- W4382364321 hasConcept C202444582 @default.
- W4382364321 hasConcept C22212356 @default.
- W4382364321 hasConcept C2776505523 @default.
- W4382364321 hasConcept C2777113093 @default.
- W4382364321 hasConcept C2781238097 @default.
- W4382364321 hasConcept C31972630 @default.
- W4382364321 hasConcept C33923547 @default.
- W4382364321 hasConcept C41008148 @default.
- W4382364321 hasConcept C44154836 @default.
- W4382364321 hasConcept C520434653 @default.
- W4382364321 hasConcept C95457728 @default.
- W4382364321 hasConcept C9652623 @default.
- W4382364321 hasConcept C97541855 @default.
- W4382364321 hasConceptScore W4382364321C11413529 @default.
- W4382364321 hasConceptScore W4382364321C120665830 @default.
- W4382364321 hasConceptScore W4382364321C121332964 @default.
- W4382364321 hasConceptScore W4382364321C127413603 @default.
- W4382364321 hasConceptScore W4382364321C141349535 @default.
- W4382364321 hasConceptScore W4382364321C154945302 @default.
- W4382364321 hasConceptScore W4382364321C166957645 @default.
- W4382364321 hasConceptScore W4382364321C202444582 @default.
- W4382364321 hasConceptScore W4382364321C22212356 @default.
- W4382364321 hasConceptScore W4382364321C2776505523 @default.
- W4382364321 hasConceptScore W4382364321C2777113093 @default.
- W4382364321 hasConceptScore W4382364321C2781238097 @default.
- W4382364321 hasConceptScore W4382364321C31972630 @default.
- W4382364321 hasConceptScore W4382364321C33923547 @default.
- W4382364321 hasConceptScore W4382364321C41008148 @default.
- W4382364321 hasConceptScore W4382364321C44154836 @default.
- W4382364321 hasConceptScore W4382364321C520434653 @default.
- W4382364321 hasConceptScore W4382364321C95457728 @default.
- W4382364321 hasConceptScore W4382364321C9652623 @default.
- W4382364321 hasConceptScore W4382364321C97541855 @default.
- W4382364321 hasFunder F4320321001 @default.
- W4382364321 hasFunder F4320321878 @default.