Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382364394> ?p ?o ?g. }
- W4382364394 endingPage "318" @default.
- W4382364394 startingPage "297" @default.
- W4382364394 abstract "Inference by means of mathematical modeling from a collection of observations remains a crucial tool for scientific discovery and is ubiquitous in application areas such as signal compression, imaging restoration, and supervised machine learning. With ever-increasing model complexities and larger data sets, new specially designed methods are urgently needed to recover meaningful quantities of interest. We consider the broad spectrum of linear inverse problems where the aim is to reconstruct quantities with a sparse representation on some vector space. We provide a new variable projection augmented Lagrangian algorithm to solve the underlying ℓ1 regularized inverse problem that is both efficient and effective. We present the proof of convergence for an algorithm using an inexact step for the projected problem at each iteration. The performance and convergence properties for various imaging problems are investigated. The efficiency of the algorithm makes it feasible to automatically find the regularization parameter, here illustrated using an argument based on the degrees of freedom of the objective function equipped with a bisection algorithm for root-finding." @default.
- W4382364394 created "2023-06-29" @default.
- W4382364394 creator A5033871686 @default.
- W4382364394 creator A5054213578 @default.
- W4382364394 date "2023-10-01" @default.
- W4382364394 modified "2023-10-16" @default.
- W4382364394 title "A Variable Projection Method for Large-Scale Inverse Problems with ℓ1 Regularization" @default.
- W4382364394 cites W1502338185 @default.
- W4382364394 cites W1859434065 @default.
- W4382364394 cites W1964709249 @default.
- W4382364394 cites W1986080131 @default.
- W4382364394 cites W1990381576 @default.
- W4382364394 cites W1995691260 @default.
- W4382364394 cites W2000769684 @default.
- W4382364394 cites W2010954012 @default.
- W4382364394 cites W2011181254 @default.
- W4382364394 cites W2018089423 @default.
- W4382364394 cites W2057624533 @default.
- W4382364394 cites W2058532290 @default.
- W4382364394 cites W2063978378 @default.
- W4382364394 cites W2065288681 @default.
- W4382364394 cites W2067689904 @default.
- W4382364394 cites W2076261573 @default.
- W4382364394 cites W2079261074 @default.
- W4382364394 cites W2090636411 @default.
- W4382364394 cites W2090890761 @default.
- W4382364394 cites W2092663520 @default.
- W4382364394 cites W2097897435 @default.
- W4382364394 cites W2100556411 @default.
- W4382364394 cites W2129131372 @default.
- W4382364394 cites W2136556155 @default.
- W4382364394 cites W2142058898 @default.
- W4382364394 cites W2257208204 @default.
- W4382364394 cites W2316564661 @default.
- W4382364394 cites W2573734040 @default.
- W4382364394 cites W2913507074 @default.
- W4382364394 cites W2963879750 @default.
- W4382364394 cites W2964025917 @default.
- W4382364394 cites W2964137678 @default.
- W4382364394 cites W2998919771 @default.
- W4382364394 cites W3007809852 @default.
- W4382364394 cites W3013432954 @default.
- W4382364394 cites W3020692621 @default.
- W4382364394 cites W3022380717 @default.
- W4382364394 cites W3033368844 @default.
- W4382364394 cites W3098272239 @default.
- W4382364394 cites W3101558399 @default.
- W4382364394 cites W3106348863 @default.
- W4382364394 cites W3198331841 @default.
- W4382364394 cites W3202046707 @default.
- W4382364394 cites W3203078849 @default.
- W4382364394 cites W4200577140 @default.
- W4382364394 cites W4244393449 @default.
- W4382364394 cites W4291144907 @default.
- W4382364394 cites W4292363360 @default.
- W4382364394 cites W4363677294 @default.
- W4382364394 doi "https://doi.org/10.1016/j.apnum.2023.06.015" @default.
- W4382364394 hasPublicationYear "2023" @default.
- W4382364394 type Work @default.
- W4382364394 citedByCount "0" @default.
- W4382364394 crossrefType "journal-article" @default.
- W4382364394 hasAuthorship W4382364394A5033871686 @default.
- W4382364394 hasAuthorship W4382364394A5054213578 @default.
- W4382364394 hasConcept C11413529 @default.
- W4382364394 hasConcept C126255220 @default.
- W4382364394 hasConcept C134306372 @default.
- W4382364394 hasConcept C135252773 @default.
- W4382364394 hasConcept C150452318 @default.
- W4382364394 hasConcept C154945302 @default.
- W4382364394 hasConcept C158968445 @default.
- W4382364394 hasConcept C2776135515 @default.
- W4382364394 hasConcept C33923547 @default.
- W4382364394 hasConcept C41008148 @default.
- W4382364394 hasConceptScore W4382364394C11413529 @default.
- W4382364394 hasConceptScore W4382364394C126255220 @default.
- W4382364394 hasConceptScore W4382364394C134306372 @default.
- W4382364394 hasConceptScore W4382364394C135252773 @default.
- W4382364394 hasConceptScore W4382364394C150452318 @default.
- W4382364394 hasConceptScore W4382364394C154945302 @default.
- W4382364394 hasConceptScore W4382364394C158968445 @default.
- W4382364394 hasConceptScore W4382364394C2776135515 @default.
- W4382364394 hasConceptScore W4382364394C33923547 @default.
- W4382364394 hasConceptScore W4382364394C41008148 @default.
- W4382364394 hasLocation W43823643941 @default.
- W4382364394 hasOpenAccess W4382364394 @default.
- W4382364394 hasPrimaryLocation W43823643941 @default.
- W4382364394 hasRelatedWork W2007255736 @default.
- W4382364394 hasRelatedWork W2027659296 @default.
- W4382364394 hasRelatedWork W2036724572 @default.
- W4382364394 hasRelatedWork W2088707050 @default.
- W4382364394 hasRelatedWork W2127198104 @default.
- W4382364394 hasRelatedWork W2167308866 @default.
- W4382364394 hasRelatedWork W3032916910 @default.
- W4382364394 hasRelatedWork W4211018764 @default.
- W4382364394 hasRelatedWork W4281620578 @default.
- W4382364394 hasRelatedWork W4307784304 @default.
- W4382364394 hasVolume "192" @default.
- W4382364394 isParatext "false" @default.