Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382365267> ?p ?o ?g. }
- W4382365267 endingPage "538" @default.
- W4382365267 startingPage "530" @default.
- W4382365267 abstract "Objectives This study aimed to investigate whether machine learning (ML) is useful for predicting the contrast material (CM) dose required to obtain a clinically optimal contrast enhancement in hepatic dynamic computed tomography (CT). Methods We trained and evaluated ensemble ML regressors to predict the CM doses needed for optimal enhancement in hepatic dynamic CT using 236 patients for a training data set and 94 patients for a test data set. After the ML training, we randomly divided using the ML-based (n = 100) and the body weight (BW)–based protocols (n = 100) by the prospective trial. The BW protocol was performed using routine protocol (600 mg/kg of iodine) by the prospective trial. The CT numbers of the abdominal aorta and hepatic parenchyma, CM dose, and injection rate were compared between each protocol using the paired t test. Equivalence tests were performed with equivalent margins of 100 and 20 Hounsfield units for the aorta and liver, respectively. Results The CM dose and injection rate for the ML and BW protocols were 112.3 mL and 3.7 mL/s, and 118.0 mL and 3.9 mL/s ( P < 0.05). There were no significant differences in the CT numbers of the abdominal aorta and hepatic parenchyma between the 2 protocols ( P = 0.20 and 0.45). The 95% confidence interval for the difference in the CT number of the abdominal aorta and hepatic parenchyma between 2 protocols was within the range of predetermined equivalence margins. Conclusions Machine learning is useful for predicting the CM dose and injection rate required to obtain the optimal clinical contrast enhancement for hepatic dynamic CT without reducing the CT number of the abdominal aorta and hepatic parenchyma." @default.
- W4382365267 created "2023-06-29" @default.
- W4382365267 creator A5006106317 @default.
- W4382365267 creator A5015181851 @default.
- W4382365267 creator A5016600404 @default.
- W4382365267 creator A5017660722 @default.
- W4382365267 creator A5032369983 @default.
- W4382365267 creator A5032643459 @default.
- W4382365267 creator A5038359442 @default.
- W4382365267 creator A5040086585 @default.
- W4382365267 creator A5053275355 @default.
- W4382365267 creator A5057900219 @default.
- W4382365267 creator A5078359416 @default.
- W4382365267 creator A5082151842 @default.
- W4382365267 date "2023-03-09" @default.
- W4382365267 modified "2023-09-27" @default.
- W4382365267 title "Can Machine Learning Identify the Intravenous Contrast Dose and Injection Rate Needed for Optimal Enhancement on Dynamic Liver Computed Tomography?" @default.
- W4382365267 cites W1842024361 @default.
- W4382365267 cites W1964269210 @default.
- W4382365267 cites W1989684827 @default.
- W4382365267 cites W1995146484 @default.
- W4382365267 cites W2041444117 @default.
- W4382365267 cites W2054643592 @default.
- W4382365267 cites W2077690397 @default.
- W4382365267 cites W2078769910 @default.
- W4382365267 cites W2093599551 @default.
- W4382365267 cites W2117485226 @default.
- W4382365267 cites W2130950846 @default.
- W4382365267 cites W2136860319 @default.
- W4382365267 cites W2138748742 @default.
- W4382365267 cites W2148361238 @default.
- W4382365267 cites W2152740900 @default.
- W4382365267 cites W2282360741 @default.
- W4382365267 cites W2535082340 @default.
- W4382365267 cites W2587014814 @default.
- W4382365267 cites W2614549267 @default.
- W4382365267 cites W2789637792 @default.
- W4382365267 cites W2896634706 @default.
- W4382365267 cites W2901024450 @default.
- W4382365267 cites W2923418412 @default.
- W4382365267 cites W2983154683 @default.
- W4382365267 cites W3139186403 @default.
- W4382365267 cites W3197123464 @default.
- W4382365267 cites W4205222848 @default.
- W4382365267 cites W4220813410 @default.
- W4382365267 doi "https://doi.org/10.1097/rct.0000000000001468" @default.
- W4382365267 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37380150" @default.
- W4382365267 hasPublicationYear "2023" @default.
- W4382365267 type Work @default.
- W4382365267 citedByCount "0" @default.
- W4382365267 crossrefType "journal-article" @default.
- W4382365267 hasAuthorship W4382365267A5006106317 @default.
- W4382365267 hasAuthorship W4382365267A5015181851 @default.
- W4382365267 hasAuthorship W4382365267A5016600404 @default.
- W4382365267 hasAuthorship W4382365267A5017660722 @default.
- W4382365267 hasAuthorship W4382365267A5032369983 @default.
- W4382365267 hasAuthorship W4382365267A5032643459 @default.
- W4382365267 hasAuthorship W4382365267A5038359442 @default.
- W4382365267 hasAuthorship W4382365267A5040086585 @default.
- W4382365267 hasAuthorship W4382365267A5053275355 @default.
- W4382365267 hasAuthorship W4382365267A5057900219 @default.
- W4382365267 hasAuthorship W4382365267A5078359416 @default.
- W4382365267 hasAuthorship W4382365267A5082151842 @default.
- W4382365267 hasConcept C126322002 @default.
- W4382365267 hasConcept C126838900 @default.
- W4382365267 hasConcept C141071460 @default.
- W4382365267 hasConcept C187954543 @default.
- W4382365267 hasConcept C188816634 @default.
- W4382365267 hasConcept C2779980429 @default.
- W4382365267 hasConcept C2780520971 @default.
- W4382365267 hasConcept C2989005 @default.
- W4382365267 hasConcept C44249647 @default.
- W4382365267 hasConcept C544519230 @default.
- W4382365267 hasConcept C71924100 @default.
- W4382365267 hasConceptScore W4382365267C126322002 @default.
- W4382365267 hasConceptScore W4382365267C126838900 @default.
- W4382365267 hasConceptScore W4382365267C141071460 @default.
- W4382365267 hasConceptScore W4382365267C187954543 @default.
- W4382365267 hasConceptScore W4382365267C188816634 @default.
- W4382365267 hasConceptScore W4382365267C2779980429 @default.
- W4382365267 hasConceptScore W4382365267C2780520971 @default.
- W4382365267 hasConceptScore W4382365267C2989005 @default.
- W4382365267 hasConceptScore W4382365267C44249647 @default.
- W4382365267 hasConceptScore W4382365267C544519230 @default.
- W4382365267 hasConceptScore W4382365267C71924100 @default.
- W4382365267 hasIssue "4" @default.
- W4382365267 hasLocation W43823652671 @default.
- W4382365267 hasLocation W43823652672 @default.
- W4382365267 hasOpenAccess W4382365267 @default.
- W4382365267 hasPrimaryLocation W43823652671 @default.
- W4382365267 hasRelatedWork W2043813182 @default.
- W4382365267 hasRelatedWork W2066429881 @default.
- W4382365267 hasRelatedWork W2108360265 @default.
- W4382365267 hasRelatedWork W2141426332 @default.
- W4382365267 hasRelatedWork W239019445 @default.
- W4382365267 hasRelatedWork W2411514362 @default.
- W4382365267 hasRelatedWork W2411663926 @default.
- W4382365267 hasRelatedWork W2539871420 @default.