Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382394796> ?p ?o ?g. }
- W4382394796 endingPage "271" @default.
- W4382394796 startingPage "259" @default.
- W4382394796 abstract "Automated electroencephalographic (EEG) signals classification using deep learning algorithms is an emerging technique in neuroscience that has the potential to detect brain pathologies such as epilepsy efficiently. In this process, deep learning algorithms are trained with labeled EEG signal datasets. However, due to the highly complex nature of EEG signals and the large amount of irrelevant information they contain, feature extraction techniques must be applied to reduce their dimensionality and focus on relevant information. This paper presents a comparative study on feature extraction methods for the classification of EEG recordings. The results demonstrate that the proposed classification algorithms and characterisation techniques are effective and suitable, as the accuracy metrics reach a value of 99.27%. The results presented in this paper contribute to the further development of automatic EEG signal classification methods based on deep learning." @default.
- W4382394796 created "2023-06-29" @default.
- W4382394796 creator A5017650015 @default.
- W4382394796 creator A5048939163 @default.
- W4382394796 creator A5092350242 @default.
- W4382394796 creator A5092350243 @default.
- W4382394796 date "2023-01-01" @default.
- W4382394796 modified "2023-09-25" @default.
- W4382394796 title "Deep Learning for Automatic Electroencephalographic Signals Classification" @default.
- W4382394796 cites W1867929606 @default.
- W4382394796 cites W2022856590 @default.
- W4382394796 cites W2059016985 @default.
- W4382394796 cites W2547384925 @default.
- W4382394796 cites W2915893085 @default.
- W4382394796 cites W2941555836 @default.
- W4382394796 cites W2969236826 @default.
- W4382394796 cites W2969935933 @default.
- W4382394796 cites W2970967890 @default.
- W4382394796 cites W2991806272 @default.
- W4382394796 cites W2997820950 @default.
- W4382394796 cites W3013335022 @default.
- W4382394796 cites W3014714387 @default.
- W4382394796 cites W3020837326 @default.
- W4382394796 cites W3035101080 @default.
- W4382394796 cites W3126745694 @default.
- W4382394796 cites W3134410992 @default.
- W4382394796 cites W3210496560 @default.
- W4382394796 cites W3211972444 @default.
- W4382394796 cites W3214277056 @default.
- W4382394796 cites W4213194625 @default.
- W4382394796 cites W4214849074 @default.
- W4382394796 cites W4224950226 @default.
- W4382394796 cites W4226265462 @default.
- W4382394796 cites W4280650599 @default.
- W4382394796 cites W4285111878 @default.
- W4382394796 cites W4294012107 @default.
- W4382394796 cites W4322772407 @default.
- W4382394796 doi "https://doi.org/10.1007/978-3-031-34953-9_20" @default.
- W4382394796 hasPublicationYear "2023" @default.
- W4382394796 type Work @default.
- W4382394796 citedByCount "0" @default.
- W4382394796 crossrefType "book-chapter" @default.
- W4382394796 hasAuthorship W4382394796A5017650015 @default.
- W4382394796 hasAuthorship W4382394796A5048939163 @default.
- W4382394796 hasAuthorship W4382394796A5092350242 @default.
- W4382394796 hasAuthorship W4382394796A5092350243 @default.
- W4382394796 hasConcept C108583219 @default.
- W4382394796 hasConcept C111030470 @default.
- W4382394796 hasConcept C119857082 @default.
- W4382394796 hasConcept C120665830 @default.
- W4382394796 hasConcept C121332964 @default.
- W4382394796 hasConcept C138885662 @default.
- W4382394796 hasConcept C153180895 @default.
- W4382394796 hasConcept C154945302 @default.
- W4382394796 hasConcept C169760540 @default.
- W4382394796 hasConcept C192209626 @default.
- W4382394796 hasConcept C199360897 @default.
- W4382394796 hasConcept C2776401178 @default.
- W4382394796 hasConcept C2779843651 @default.
- W4382394796 hasConcept C41008148 @default.
- W4382394796 hasConcept C41895202 @default.
- W4382394796 hasConcept C522805319 @default.
- W4382394796 hasConcept C52622490 @default.
- W4382394796 hasConcept C70518039 @default.
- W4382394796 hasConcept C86803240 @default.
- W4382394796 hasConceptScore W4382394796C108583219 @default.
- W4382394796 hasConceptScore W4382394796C111030470 @default.
- W4382394796 hasConceptScore W4382394796C119857082 @default.
- W4382394796 hasConceptScore W4382394796C120665830 @default.
- W4382394796 hasConceptScore W4382394796C121332964 @default.
- W4382394796 hasConceptScore W4382394796C138885662 @default.
- W4382394796 hasConceptScore W4382394796C153180895 @default.
- W4382394796 hasConceptScore W4382394796C154945302 @default.
- W4382394796 hasConceptScore W4382394796C169760540 @default.
- W4382394796 hasConceptScore W4382394796C192209626 @default.
- W4382394796 hasConceptScore W4382394796C199360897 @default.
- W4382394796 hasConceptScore W4382394796C2776401178 @default.
- W4382394796 hasConceptScore W4382394796C2779843651 @default.
- W4382394796 hasConceptScore W4382394796C41008148 @default.
- W4382394796 hasConceptScore W4382394796C41895202 @default.
- W4382394796 hasConceptScore W4382394796C522805319 @default.
- W4382394796 hasConceptScore W4382394796C52622490 @default.
- W4382394796 hasConceptScore W4382394796C70518039 @default.
- W4382394796 hasConceptScore W4382394796C86803240 @default.
- W4382394796 hasLocation W43823947961 @default.
- W4382394796 hasOpenAccess W4382394796 @default.
- W4382394796 hasPrimaryLocation W43823947961 @default.
- W4382394796 hasRelatedWork W1965275221 @default.
- W4382394796 hasRelatedWork W2546942002 @default.
- W4382394796 hasRelatedWork W2733060750 @default.
- W4382394796 hasRelatedWork W2773120646 @default.
- W4382394796 hasRelatedWork W2883447302 @default.
- W4382394796 hasRelatedWork W2922457425 @default.
- W4382394796 hasRelatedWork W2946016983 @default.
- W4382394796 hasRelatedWork W3133411644 @default.
- W4382394796 hasRelatedWork W3211035526 @default.
- W4382394796 hasRelatedWork W3127217315 @default.
- W4382394796 isParatext "false" @default.