Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382395763> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4382395763 endingPage "102248" @default.
- W4382395763 startingPage "102248" @default.
- W4382395763 abstract "Business process simulation is a well-known approach to estimate the impact of changes to a process with respect to time and cost measures – a practice known as what-if process analysis. The usefulness of such estimations hinges on the accuracy of the underlying simulation model. Data-Driven Simulation (DDS) methods leverage process mining techniques to learn business process simulation models from event logs. Empirical studies have shown that, while DDS models adequately capture the observed sequences of activities and their frequencies, they fail to accurately capture the temporal dynamics of real-life processes. In contrast, generative Deep Learning (DL) models are better able to capture such temporal dynamics. The drawback of DL models is that users cannot alter them for what-if analysis due to their black-box nature. This paper presents a hybrid approach to learn process simulation models from event logs wherein a (stochastic) process model is extracted via DDS techniques, and then combined with a DL model to generate timestamped event sequences. The proposed approach allows us to simulate different types of changes, including the addition of new activity types to a process. This latter capability is achieved by encoding the activities by means of embeddings, rather than representing them as one-hot-encoded categories. An experimental evaluation shows that the resulting hybrid simulation models match the temporal accuracy of pure DL models, while partially retaining the what-if analysis capability of DDS approaches. The evaluation also sheds light into the relative performance of multiple embedding approaches to represent the activities." @default.
- W4382395763 created "2023-06-29" @default.
- W4382395763 creator A5006211350 @default.
- W4382395763 creator A5013823073 @default.
- W4382395763 creator A5079691147 @default.
- W4382395763 creator A5085212075 @default.
- W4382395763 date "2023-07-01" @default.
- W4382395763 modified "2023-10-18" @default.
- W4382395763 title "Learning business process simulation models: A Hybrid process mining and deep learning approach" @default.
- W4382395763 cites W1913639845 @default.
- W4382395763 cites W1991927904 @default.
- W4382395763 cites W2008161988 @default.
- W4382395763 cites W2108117917 @default.
- W4382395763 cites W2222512263 @default.
- W4382395763 cites W2584722588 @default.
- W4382395763 cites W2747599906 @default.
- W4382395763 cites W2804147849 @default.
- W4382395763 cites W2919115771 @default.
- W4382395763 cites W3013550390 @default.
- W4382395763 cites W3015974343 @default.
- W4382395763 cites W3028378014 @default.
- W4382395763 cites W3044946215 @default.
- W4382395763 cites W3128849215 @default.
- W4382395763 cites W3164703131 @default.
- W4382395763 cites W3178234265 @default.
- W4382395763 cites W3198564768 @default.
- W4382395763 doi "https://doi.org/10.1016/j.is.2023.102248" @default.
- W4382395763 hasPublicationYear "2023" @default.
- W4382395763 type Work @default.
- W4382395763 citedByCount "0" @default.
- W4382395763 crossrefType "journal-article" @default.
- W4382395763 hasAuthorship W4382395763A5006211350 @default.
- W4382395763 hasAuthorship W4382395763A5013823073 @default.
- W4382395763 hasAuthorship W4382395763A5079691147 @default.
- W4382395763 hasAuthorship W4382395763A5085212075 @default.
- W4382395763 hasBestOaLocation W43823957631 @default.
- W4382395763 hasConcept C111919701 @default.
- W4382395763 hasConcept C119857082 @default.
- W4382395763 hasConcept C121332964 @default.
- W4382395763 hasConcept C124101348 @default.
- W4382395763 hasConcept C124670913 @default.
- W4382395763 hasConcept C144133560 @default.
- W4382395763 hasConcept C153083717 @default.
- W4382395763 hasConcept C154945302 @default.
- W4382395763 hasConcept C162853370 @default.
- W4382395763 hasConcept C167966045 @default.
- W4382395763 hasConcept C174998907 @default.
- W4382395763 hasConcept C207505557 @default.
- W4382395763 hasConcept C2779662365 @default.
- W4382395763 hasConcept C39890363 @default.
- W4382395763 hasConcept C41008148 @default.
- W4382395763 hasConcept C41608201 @default.
- W4382395763 hasConcept C62520636 @default.
- W4382395763 hasConcept C76956256 @default.
- W4382395763 hasConcept C85345410 @default.
- W4382395763 hasConcept C93453677 @default.
- W4382395763 hasConcept C98045186 @default.
- W4382395763 hasConceptScore W4382395763C111919701 @default.
- W4382395763 hasConceptScore W4382395763C119857082 @default.
- W4382395763 hasConceptScore W4382395763C121332964 @default.
- W4382395763 hasConceptScore W4382395763C124101348 @default.
- W4382395763 hasConceptScore W4382395763C124670913 @default.
- W4382395763 hasConceptScore W4382395763C144133560 @default.
- W4382395763 hasConceptScore W4382395763C153083717 @default.
- W4382395763 hasConceptScore W4382395763C154945302 @default.
- W4382395763 hasConceptScore W4382395763C162853370 @default.
- W4382395763 hasConceptScore W4382395763C167966045 @default.
- W4382395763 hasConceptScore W4382395763C174998907 @default.
- W4382395763 hasConceptScore W4382395763C207505557 @default.
- W4382395763 hasConceptScore W4382395763C2779662365 @default.
- W4382395763 hasConceptScore W4382395763C39890363 @default.
- W4382395763 hasConceptScore W4382395763C41008148 @default.
- W4382395763 hasConceptScore W4382395763C41608201 @default.
- W4382395763 hasConceptScore W4382395763C62520636 @default.
- W4382395763 hasConceptScore W4382395763C76956256 @default.
- W4382395763 hasConceptScore W4382395763C85345410 @default.
- W4382395763 hasConceptScore W4382395763C93453677 @default.
- W4382395763 hasConceptScore W4382395763C98045186 @default.
- W4382395763 hasFunder F4320334678 @default.
- W4382395763 hasFunder F4320338335 @default.
- W4382395763 hasLocation W43823957631 @default.
- W4382395763 hasOpenAccess W4382395763 @default.
- W4382395763 hasPrimaryLocation W43823957631 @default.
- W4382395763 hasRelatedWork W1611051793 @default.
- W4382395763 hasRelatedWork W2158991459 @default.
- W4382395763 hasRelatedWork W2345053703 @default.
- W4382395763 hasRelatedWork W2473542839 @default.
- W4382395763 hasRelatedWork W2896989384 @default.
- W4382395763 hasRelatedWork W2918066515 @default.
- W4382395763 hasRelatedWork W2945372161 @default.
- W4382395763 hasRelatedWork W3137799461 @default.
- W4382395763 hasRelatedWork W4285420522 @default.
- W4382395763 hasRelatedWork W4361865022 @default.
- W4382395763 hasVolume "117" @default.
- W4382395763 isParatext "false" @default.
- W4382395763 isRetracted "false" @default.
- W4382395763 workType "article" @default.