Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382396312> ?p ?o ?g. }
- W4382396312 abstract "Abstract The solid‐state battery (SSB) is a promising direction to address the inherent safety problems in commercial batteries and energy storage systems. However, the development of SSBs is still hider of the low ionic conductivity of solid‐state electrolytes. Based on a machine learning (ML) method, a cobalt‐doping strategy was developed for the Na 3.2 Zr 2 Si 2.2 P 0.8 O 12 (NASICON) compound by training on NASICON‐type solid electrolyte data. The cobalt‐doping strategy efficiently improves the NASICONs’ ionic conductivity to ~2.63 mS/cm with low activation energy at ~0.245 eV. The grain‐boundary ionic conductivity reaches ~11.00 mS/cm without extra densification of the pellet. The NASICON's structures were studied by the Rietveld and the bond‐valence methods. The calculations and observed structural transitions confirm that the cobalt‐doping strategy promotes the structural transition and adjusts the structure to a better performance state. The doping strategy predicted by the ML model is consistent with our experimental results, providing very useful guidance for improving ionic conductivity of NASICON electrolytes." @default.
- W4382396312 created "2023-06-29" @default.
- W4382396312 creator A5015971198 @default.
- W4382396312 creator A5046164700 @default.
- W4382396312 creator A5050202896 @default.
- W4382396312 creator A5062506427 @default.
- W4382396312 creator A5065064293 @default.
- W4382396312 creator A5066828716 @default.
- W4382396312 creator A5075353851 @default.
- W4382396312 date "2023-07-17" @default.
- W4382396312 modified "2023-10-14" @default.
- W4382396312 title "Machine Learning Guided Cobalt‐doping Strategy for Solid‐state NASICON Electrolytes" @default.
- W4382396312 cites W1970968886 @default.
- W4382396312 cites W1982809827 @default.
- W4382396312 cites W1991654310 @default.
- W4382396312 cites W1992985800 @default.
- W4382396312 cites W2014836882 @default.
- W4382396312 cites W2021403769 @default.
- W4382396312 cites W2022874481 @default.
- W4382396312 cites W2037854524 @default.
- W4382396312 cites W2038964749 @default.
- W4382396312 cites W2060543343 @default.
- W4382396312 cites W2078570517 @default.
- W4382396312 cites W2089204569 @default.
- W4382396312 cites W2168034834 @default.
- W4382396312 cites W2340949334 @default.
- W4382396312 cites W2510227909 @default.
- W4382396312 cites W2544377650 @default.
- W4382396312 cites W2551323975 @default.
- W4382396312 cites W2589715311 @default.
- W4382396312 cites W2753242583 @default.
- W4382396312 cites W2756653722 @default.
- W4382396312 cites W2794293230 @default.
- W4382396312 cites W2913187047 @default.
- W4382396312 cites W2916840153 @default.
- W4382396312 cites W2953832076 @default.
- W4382396312 cites W2962949934 @default.
- W4382396312 cites W2969712750 @default.
- W4382396312 cites W2980178091 @default.
- W4382396312 cites W2991683414 @default.
- W4382396312 cites W3009247151 @default.
- W4382396312 cites W3037550392 @default.
- W4382396312 cites W3048767382 @default.
- W4382396312 cites W3091172930 @default.
- W4382396312 cites W3119095098 @default.
- W4382396312 cites W3122501539 @default.
- W4382396312 cites W3130641683 @default.
- W4382396312 cites W3134408258 @default.
- W4382396312 cites W3163132849 @default.
- W4382396312 cites W3168276127 @default.
- W4382396312 cites W3170972469 @default.
- W4382396312 cites W3174684619 @default.
- W4382396312 cites W3198851080 @default.
- W4382396312 cites W3204265401 @default.
- W4382396312 cites W4200054339 @default.
- W4382396312 cites W4206807828 @default.
- W4382396312 cites W4316468412 @default.
- W4382396312 cites W4317241558 @default.
- W4382396312 cites W987926871 @default.
- W4382396312 doi "https://doi.org/10.1002/ejic.202300382" @default.
- W4382396312 hasPublicationYear "2023" @default.
- W4382396312 type Work @default.
- W4382396312 citedByCount "0" @default.
- W4382396312 crossrefType "journal-article" @default.
- W4382396312 hasAuthorship W4382396312A5015971198 @default.
- W4382396312 hasAuthorship W4382396312A5046164700 @default.
- W4382396312 hasAuthorship W4382396312A5050202896 @default.
- W4382396312 hasAuthorship W4382396312A5062506427 @default.
- W4382396312 hasAuthorship W4382396312A5065064293 @default.
- W4382396312 hasAuthorship W4382396312A5066828716 @default.
- W4382396312 hasAuthorship W4382396312A5075353851 @default.
- W4382396312 hasConcept C109883240 @default.
- W4382396312 hasConcept C115624301 @default.
- W4382396312 hasConcept C115645028 @default.
- W4382396312 hasConcept C131540310 @default.
- W4382396312 hasConcept C138679309 @default.
- W4382396312 hasConcept C145148216 @default.
- W4382396312 hasConcept C147789679 @default.
- W4382396312 hasConcept C168900304 @default.
- W4382396312 hasConcept C17525397 @default.
- W4382396312 hasConcept C178790620 @default.
- W4382396312 hasConcept C179104552 @default.
- W4382396312 hasConcept C185592680 @default.
- W4382396312 hasConcept C192562407 @default.
- W4382396312 hasConcept C2182769 @default.
- W4382396312 hasConcept C49040817 @default.
- W4382396312 hasConcept C515602321 @default.
- W4382396312 hasConcept C57863236 @default.
- W4382396312 hasConcept C68801617 @default.
- W4382396312 hasConcept C8010536 @default.
- W4382396312 hasConceptScore W4382396312C109883240 @default.
- W4382396312 hasConceptScore W4382396312C115624301 @default.
- W4382396312 hasConceptScore W4382396312C115645028 @default.
- W4382396312 hasConceptScore W4382396312C131540310 @default.
- W4382396312 hasConceptScore W4382396312C138679309 @default.
- W4382396312 hasConceptScore W4382396312C145148216 @default.
- W4382396312 hasConceptScore W4382396312C147789679 @default.
- W4382396312 hasConceptScore W4382396312C168900304 @default.
- W4382396312 hasConceptScore W4382396312C17525397 @default.
- W4382396312 hasConceptScore W4382396312C178790620 @default.