Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382397540> ?p ?o ?g. }
- W4382397540 abstract "Introduction This study aims to develop an imaging model based on multi-parametric MR images for distinguishing between prostate cancer (PCa) and prostate hyperplasia. Methods A total of 236 subjects were enrolled and divided into training and test sets for model construction. Firstly, a multi-view radiomics modeling strategy was designed in which different combinations of radiomics feature categories (original, LoG, and wavelet) were compared to obtain the optimal input feature sets. Minimum-redundancy maximum-relevance (mRMR) selection and least absolute shrinkage selection operator (LASSO) were used for feature reduction, and the next logistic regression method was used for model construction. Then, a Swin Transformer architecture was designed and trained using transfer learning techniques to construct the deep learning models (DL). Finally, the constructed multi-view radiomics and DL models were combined and compared for model selection and nomogram construction. The prediction accuracy, consistency, and clinical benefit were comprehensively evaluated in the model comparison. Results The optimal input feature set was found when LoG and wavelet features were combined, while 22 and 17 radiomic features in this set were selected to construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2 DL models were built by transferring learning from a large number of natural images to a relatively small sample of prostate images. All individual and combined models showed good predictive accuracy, consistency, and clinical benefit. Compared with using only an ADC-based model, adding a T2-based model to the combined model would reduce the model’s predictive performance. The ADCCombinedScore model showed the best predictive performance among all and was transformed into a nomogram for better use in clinics. Discussion The constructed models in our study can be used as a predictor in differentiating PCa and BPH, thus helping clinicians make better clinical treatment decisions and reducing unnecessary prostate biopsies." @default.
- W4382397540 created "2023-06-29" @default.
- W4382397540 creator A5000194562 @default.
- W4382397540 creator A5011337870 @default.
- W4382397540 creator A5025076603 @default.
- W4382397540 creator A5026404343 @default.
- W4382397540 creator A5028688827 @default.
- W4382397540 creator A5035321872 @default.
- W4382397540 creator A5082857859 @default.
- W4382397540 creator A5083852654 @default.
- W4382397540 date "2023-06-28" @default.
- W4382397540 modified "2023-09-30" @default.
- W4382397540 title "Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI" @default.
- W4382397540 cites W2033069053 @default.
- W4382397540 cites W2058149928 @default.
- W4382397540 cites W2080725537 @default.
- W4382397540 cites W2121642414 @default.
- W4382397540 cites W2128739912 @default.
- W4382397540 cites W2138136995 @default.
- W4382397540 cites W2156505206 @default.
- W4382397540 cites W2174661749 @default.
- W4382397540 cites W2179709561 @default.
- W4382397540 cites W2346343836 @default.
- W4382397540 cites W2511949746 @default.
- W4382397540 cites W2528865212 @default.
- W4382397540 cites W2562490391 @default.
- W4382397540 cites W2763355946 @default.
- W4382397540 cites W2794518994 @default.
- W4382397540 cites W2824707055 @default.
- W4382397540 cites W2883201428 @default.
- W4382397540 cites W2889646458 @default.
- W4382397540 cites W2891497399 @default.
- W4382397540 cites W2901306526 @default.
- W4382397540 cites W2904793394 @default.
- W4382397540 cites W2911312407 @default.
- W4382397540 cites W2915676996 @default.
- W4382397540 cites W2921338250 @default.
- W4382397540 cites W2921426299 @default.
- W4382397540 cites W2921444773 @default.
- W4382397540 cites W2921488124 @default.
- W4382397540 cites W3014013305 @default.
- W4382397540 cites W3014643176 @default.
- W4382397540 cites W3028711397 @default.
- W4382397540 cites W313065440 @default.
- W4382397540 cites W3137287164 @default.
- W4382397540 cites W3164057607 @default.
- W4382397540 cites W3164728482 @default.
- W4382397540 cites W3180641083 @default.
- W4382397540 cites W3181422783 @default.
- W4382397540 cites W4284890590 @default.
- W4382397540 cites W4297460160 @default.
- W4382397540 cites W4307229393 @default.
- W4382397540 cites W4312128880 @default.
- W4382397540 cites W4366286972 @default.
- W4382397540 doi "https://doi.org/10.3389/fonc.2023.1198899" @default.
- W4382397540 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37448515" @default.
- W4382397540 hasPublicationYear "2023" @default.
- W4382397540 type Work @default.
- W4382397540 citedByCount "2" @default.
- W4382397540 countsByYear W43823975402023 @default.
- W4382397540 crossrefType "journal-article" @default.
- W4382397540 hasAuthorship W4382397540A5000194562 @default.
- W4382397540 hasAuthorship W4382397540A5011337870 @default.
- W4382397540 hasAuthorship W4382397540A5025076603 @default.
- W4382397540 hasAuthorship W4382397540A5026404343 @default.
- W4382397540 hasAuthorship W4382397540A5028688827 @default.
- W4382397540 hasAuthorship W4382397540A5035321872 @default.
- W4382397540 hasAuthorship W4382397540A5082857859 @default.
- W4382397540 hasAuthorship W4382397540A5083852654 @default.
- W4382397540 hasBestOaLocation W43823975401 @default.
- W4382397540 hasConcept C105795698 @default.
- W4382397540 hasConcept C117251300 @default.
- W4382397540 hasConcept C119857082 @default.
- W4382397540 hasConcept C124101348 @default.
- W4382397540 hasConcept C136764020 @default.
- W4382397540 hasConcept C148483581 @default.
- W4382397540 hasConcept C153180895 @default.
- W4382397540 hasConcept C154945302 @default.
- W4382397540 hasConcept C33923547 @default.
- W4382397540 hasConcept C37616216 @default.
- W4382397540 hasConcept C41008148 @default.
- W4382397540 hasConcept C47432892 @default.
- W4382397540 hasConceptScore W4382397540C105795698 @default.
- W4382397540 hasConceptScore W4382397540C117251300 @default.
- W4382397540 hasConceptScore W4382397540C119857082 @default.
- W4382397540 hasConceptScore W4382397540C124101348 @default.
- W4382397540 hasConceptScore W4382397540C136764020 @default.
- W4382397540 hasConceptScore W4382397540C148483581 @default.
- W4382397540 hasConceptScore W4382397540C153180895 @default.
- W4382397540 hasConceptScore W4382397540C154945302 @default.
- W4382397540 hasConceptScore W4382397540C33923547 @default.
- W4382397540 hasConceptScore W4382397540C37616216 @default.
- W4382397540 hasConceptScore W4382397540C41008148 @default.
- W4382397540 hasConceptScore W4382397540C47432892 @default.
- W4382397540 hasLocation W43823975401 @default.
- W4382397540 hasLocation W43823975402 @default.
- W4382397540 hasLocation W43823975403 @default.
- W4382397540 hasOpenAccess W4382397540 @default.
- W4382397540 hasPrimaryLocation W43823975401 @default.
- W4382397540 hasRelatedWork W2316780152 @default.