Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382398922> ?p ?o ?g. }
- W4382398922 abstract "Background Prediction of mental disorders based on neuroimaging is an emerging area of research with promising first results in adults. However, research on the unique demographic of children is underrepresented and it is doubtful whether findings obtained on adults can be transferred to children. Methods Using data from 6916 children aged 9–10 in the multicenter Adolescent Brain Cognitive Development study, we extracted 136 regional volume and thickness measures from structural magnetic resonance images to rigorously evaluate the capabilities of machine learning to predict 10 different psychiatric disorders: major depressive disorder, bipolar disorder (BD), psychotic symptoms, attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, post-traumatic stress disorder, obsessive-compulsive disorder, generalized anxiety disorder, and social anxiety disorder. For each disorder, we performed cross-validation and assessed whether models discovered a true pattern in the data via permutation testing. Results Two of 10 disorders can be detected with statistical significance when using advanced models that (i) allow for non-linear relationships between neuroanatomy and disorder, (ii) model interdependencies between disorders, and (iii) avoid confounding due to sociodemographic factors: ADHD (AUROC = 0.567, p = 0.002) and BD (AUROC = 0.551, p = 0.002). In contrast, traditional models perform consistently worse and predict only ADHD with statistical significance (AUROC = 0.529, p = 0.002). Conclusion While the modest absolute classification performance does not warrant application in the clinic, our results provide empirical evidence that embracing and explicitly accounting for the complexities of mental disorders via advanced machine learning models can discover patterns that would remain hidden with traditional models." @default.
- W4382398922 created "2023-06-29" @default.
- W4382398922 creator A5002226098 @default.
- W4382398922 creator A5018341171 @default.
- W4382398922 creator A5019158041 @default.
- W4382398922 creator A5059000422 @default.
- W4382398922 creator A5069195910 @default.
- W4382398922 date "2023-06-28" @default.
- W4382398922 modified "2023-09-23" @default.
- W4382398922 title "Can we diagnose mental disorders in children? A large‐scale assessment of machine learning on structural neuroimaging of 6916 children in the adolescent brain cognitive development study" @default.
- W4382398922 cites W1097741600 @default.
- W4382398922 cites W1683332422 @default.
- W4382398922 cites W1968391727 @default.
- W4382398922 cites W1983302342 @default.
- W4382398922 cites W1993277144 @default.
- W4382398922 cites W1999954155 @default.
- W4382398922 cites W2021106097 @default.
- W4382398922 cites W2062065734 @default.
- W4382398922 cites W2072136747 @default.
- W4382398922 cites W2079228094 @default.
- W4382398922 cites W2106235379 @default.
- W4382398922 cites W2119195417 @default.
- W4382398922 cites W2152575748 @default.
- W4382398922 cites W2157825442 @default.
- W4382398922 cites W2160331326 @default.
- W4382398922 cites W2168463527 @default.
- W4382398922 cites W2310177520 @default.
- W4382398922 cites W2322983841 @default.
- W4382398922 cites W2503705709 @default.
- W4382398922 cites W2555699120 @default.
- W4382398922 cites W2590328111 @default.
- W4382398922 cites W2593448428 @default.
- W4382398922 cites W2604504584 @default.
- W4382398922 cites W2735850708 @default.
- W4382398922 cites W2766290206 @default.
- W4382398922 cites W2767185283 @default.
- W4382398922 cites W2775173797 @default.
- W4382398922 cites W2789530810 @default.
- W4382398922 cites W2803011420 @default.
- W4382398922 cites W2804287612 @default.
- W4382398922 cites W2804880164 @default.
- W4382398922 cites W2888906321 @default.
- W4382398922 cites W2891802706 @default.
- W4382398922 cites W2902620820 @default.
- W4382398922 cites W2904226249 @default.
- W4382398922 cites W2920509382 @default.
- W4382398922 cites W2945886864 @default.
- W4382398922 cites W2949222200 @default.
- W4382398922 cites W2956931776 @default.
- W4382398922 cites W2990273940 @default.
- W4382398922 cites W3005123580 @default.
- W4382398922 cites W3006047402 @default.
- W4382398922 cites W3008923041 @default.
- W4382398922 cites W3021647162 @default.
- W4382398922 cites W3033423750 @default.
- W4382398922 cites W3035160694 @default.
- W4382398922 cites W3035624610 @default.
- W4382398922 cites W3104153754 @default.
- W4382398922 cites W3122856402 @default.
- W4382398922 cites W3127700622 @default.
- W4382398922 cites W3183871338 @default.
- W4382398922 cites W3209642002 @default.
- W4382398922 cites W4220718392 @default.
- W4382398922 cites W4234965298 @default.
- W4382398922 cites W4241074797 @default.
- W4382398922 cites W4242281216 @default.
- W4382398922 cites W4247665917 @default.
- W4382398922 doi "https://doi.org/10.1002/jcv2.12184" @default.
- W4382398922 hasPublicationYear "2023" @default.
- W4382398922 type Work @default.
- W4382398922 citedByCount "0" @default.
- W4382398922 crossrefType "journal-article" @default.
- W4382398922 hasAuthorship W4382398922A5002226098 @default.
- W4382398922 hasAuthorship W4382398922A5018341171 @default.
- W4382398922 hasAuthorship W4382398922A5019158041 @default.
- W4382398922 hasAuthorship W4382398922A5059000422 @default.
- W4382398922 hasAuthorship W4382398922A5069195910 @default.
- W4382398922 hasBestOaLocation W43823989221 @default.
- W4382398922 hasConcept C118552586 @default.
- W4382398922 hasConcept C15744967 @default.
- W4382398922 hasConcept C169900460 @default.
- W4382398922 hasConcept C2776174506 @default.
- W4382398922 hasConcept C2779911313 @default.
- W4382398922 hasConcept C2780051608 @default.
- W4382398922 hasConcept C2780135496 @default.
- W4382398922 hasConcept C2780783007 @default.
- W4382398922 hasConcept C558461103 @default.
- W4382398922 hasConcept C58693492 @default.
- W4382398922 hasConcept C70410870 @default.
- W4382398922 hasConceptScore W4382398922C118552586 @default.
- W4382398922 hasConceptScore W4382398922C15744967 @default.
- W4382398922 hasConceptScore W4382398922C169900460 @default.
- W4382398922 hasConceptScore W4382398922C2776174506 @default.
- W4382398922 hasConceptScore W4382398922C2779911313 @default.
- W4382398922 hasConceptScore W4382398922C2780051608 @default.
- W4382398922 hasConceptScore W4382398922C2780135496 @default.
- W4382398922 hasConceptScore W4382398922C2780783007 @default.
- W4382398922 hasConceptScore W4382398922C558461103 @default.
- W4382398922 hasConceptScore W4382398922C58693492 @default.
- W4382398922 hasConceptScore W4382398922C70410870 @default.