Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382400007> ?p ?o ?g. }
- W4382400007 endingPage "121155" @default.
- W4382400007 startingPage "121155" @default.
- W4382400007 abstract "Most strategic and operational forest management decisions are taken based on stand-level information, and quantitative models of forest dynamics are key for developing sustainable management strategies. However, data on forest stands for the initialisation of such models that are representative at large spatial scales, e.g., countries or ecoregions, are often lacking. National Forest Inventories (NFIs) provide forest data from small sample plots at large spatial scales, yet deriving full stand information based on such data is challenging. Here, we evaluate seven methods of varying complexity for deriving quantitative stand descriptions based on sample data as provided by the Swiss NFI. We selected 271 extensively measured Swiss forests stands with unimodal diameter distributions, classified them as beech- vs. spruce-dominated in five development stages and randomly placed a small sized sample plot in each stand using the Swiss NFI sampling design (i.e., a circular plot of 500 m2). Seven modelling approaches were used to derive diameter distributions and species-specific stem numbers (i.e., tree species composition) from the sample data that are representative for a particular stand (local scale) and for stand types in general (generalised scale). The prediction performance of the modelling approaches was evaluated using 100 random samples per stand to calculate prediction errors. Generalised even-aged diameter distributions were best predicted by the simultaneous parameter prediction method (PPM), i.e. a combined three-step regression approach, with on average 1.3 to 2.5 times lower prediction errors compared to the simple pooling of diameter samples. However, uneven-aged diameter distributions were best predicted by pooling. At the local scale, the simultaneous PPM performed best for data from sample plots with fewer than 17 to 19 trees across all development stages. Prediction performance of the PPMs increased for structurally and spatially diverse local stands with positively skewed diameter distributions. A Random Forest approach was most suitable for predicting species composition at both the generalised and the local scale. Our study evaluates the strengths and weaknesses of methods to model stands based on data from small sample plots. We emphasise terminological pitfalls by consequently distinguishing local accuracy and generalised representativity of the stand descriptions. We demonstrate the feasibility of deriving locally accurate stands using data from small forest sample plots and evaluate the derivation of generalised stands representative at large regions. At both scales, our developments contribute to an improved initialisation of forest models and thus to a more realistic modelling of forest development under future boundary conditions." @default.
- W4382400007 created "2023-06-29" @default.
- W4382400007 creator A5016319694 @default.
- W4382400007 creator A5033727400 @default.
- W4382400007 creator A5036629801 @default.
- W4382400007 creator A5061322612 @default.
- W4382400007 creator A5063465103 @default.
- W4382400007 creator A5065104010 @default.
- W4382400007 creator A5080800240 @default.
- W4382400007 date "2023-09-01" @default.
- W4382400007 modified "2023-10-18" @default.
- W4382400007 title "Deriving forest stand information from small sample plots: An evaluation of statistical methods" @default.
- W4382400007 cites W1513468726 @default.
- W4382400007 cites W1787375010 @default.
- W4382400007 cites W1941126449 @default.
- W4382400007 cites W1964763178 @default.
- W4382400007 cites W1982886002 @default.
- W4382400007 cites W1984286548 @default.
- W4382400007 cites W1992716748 @default.
- W4382400007 cites W2006644210 @default.
- W4382400007 cites W2014268383 @default.
- W4382400007 cites W2015833203 @default.
- W4382400007 cites W2018263789 @default.
- W4382400007 cites W2031696378 @default.
- W4382400007 cites W2036950943 @default.
- W4382400007 cites W2040568014 @default.
- W4382400007 cites W2045383776 @default.
- W4382400007 cites W2046112876 @default.
- W4382400007 cites W204885769 @default.
- W4382400007 cites W2051177122 @default.
- W4382400007 cites W2055755105 @default.
- W4382400007 cites W2061708864 @default.
- W4382400007 cites W2066378252 @default.
- W4382400007 cites W2067337043 @default.
- W4382400007 cites W2075664745 @default.
- W4382400007 cites W2081075826 @default.
- W4382400007 cites W2106780766 @default.
- W4382400007 cites W2118020555 @default.
- W4382400007 cites W2121886045 @default.
- W4382400007 cites W2125001640 @default.
- W4382400007 cites W2125658492 @default.
- W4382400007 cites W2126455054 @default.
- W4382400007 cites W2132576438 @default.
- W4382400007 cites W2136641634 @default.
- W4382400007 cites W2148369900 @default.
- W4382400007 cites W2161548576 @default.
- W4382400007 cites W2162238728 @default.
- W4382400007 cites W2165595607 @default.
- W4382400007 cites W2175105057 @default.
- W4382400007 cites W2318182825 @default.
- W4382400007 cites W2510590035 @default.
- W4382400007 cites W2513337491 @default.
- W4382400007 cites W2557117995 @default.
- W4382400007 cites W2765420525 @default.
- W4382400007 cites W2781751389 @default.
- W4382400007 cites W2786396034 @default.
- W4382400007 cites W2797945040 @default.
- W4382400007 cites W2893530572 @default.
- W4382400007 cites W2906541369 @default.
- W4382400007 cites W2906931927 @default.
- W4382400007 cites W2911964244 @default.
- W4382400007 cites W2966583471 @default.
- W4382400007 cites W2978628044 @default.
- W4382400007 cites W3007544904 @default.
- W4382400007 cites W3082990994 @default.
- W4382400007 cites W3088150383 @default.
- W4382400007 cites W3112076737 @default.
- W4382400007 cites W3128932275 @default.
- W4382400007 cites W3130372952 @default.
- W4382400007 cites W3132215043 @default.
- W4382400007 cites W3133584557 @default.
- W4382400007 cites W3135831225 @default.
- W4382400007 cites W3145311886 @default.
- W4382400007 cites W3212273013 @default.
- W4382400007 cites W3216908200 @default.
- W4382400007 cites W4232796981 @default.
- W4382400007 cites W4244137307 @default.
- W4382400007 cites W4246967890 @default.
- W4382400007 cites W4283788178 @default.
- W4382400007 cites W4317728372 @default.
- W4382400007 cites W999094879 @default.
- W4382400007 doi "https://doi.org/10.1016/j.foreco.2023.121155" @default.
- W4382400007 hasPublicationYear "2023" @default.
- W4382400007 type Work @default.
- W4382400007 citedByCount "0" @default.
- W4382400007 crossrefType "journal-article" @default.
- W4382400007 hasAuthorship W4382400007A5016319694 @default.
- W4382400007 hasAuthorship W4382400007A5033727400 @default.
- W4382400007 hasAuthorship W4382400007A5036629801 @default.
- W4382400007 hasAuthorship W4382400007A5061322612 @default.
- W4382400007 hasAuthorship W4382400007A5063465103 @default.
- W4382400007 hasAuthorship W4382400007A5065104010 @default.
- W4382400007 hasAuthorship W4382400007A5080800240 @default.
- W4382400007 hasBestOaLocation W43824000071 @default.
- W4382400007 hasConcept C105795698 @default.
- W4382400007 hasConcept C106131492 @default.
- W4382400007 hasConcept C129848803 @default.
- W4382400007 hasConcept C140779682 @default.