Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382400963> ?p ?o ?g. }
- W4382400963 abstract "Abstract The innate immune response is vital for the success of prophylactic vaccines and immunotherapies. Control of signaling in innate immune pathways can improve prophylactic vaccines by inhibiting unfavorable systemic inflammation and immunotherapies by enhancing immune stimulation. In this work, we developed a machine learning-enabled active learning pipeline to guide in vitro experimental screening and discovery of small molecule immunomodulators that improve immune responses by altering the signaling activity of innate immune responses stimulated by traditional pattern recognition receptor agonists. Molecules were tested by in vitro high throughput screening (HTS) where we measured modulation of the nuclear factor κ -light-chain-enhancer of activated B-cells (NF- κ B) and the interferon regulatory factors (IRF) pathways. These data were used to train data-driven predictive models linking molecular structure to modulation of the NF- κ B and IRF responses using deep representational learning, Gaussian process regression, and Bayesian optimization. By interleaving successive rounds of model training and in vitro HTS, we performed an active learning-guided traversal of a 139,998 molecule library. After sampling only ∼ 2% of the library, we discovered viable molecules with unprecedented immunomodulatory capacity, including those capable of suppressing NF- κ B activity by up to 15-fold, elevating NF- κ B activity by up to 5-fold, and elevating IRF activity by up to 6-fold. We extracted chemical design rules identifying particular chemical fragments as principal drivers of specific immunomodulation behaviors. We validated the immunomodulatory effect of a subset of our top candidates by measuring cytokine release profiles. Of these, one molecule induced a 3-fold enhancement in IFN- β production when delivered with a cyclic di-nucleotide stimulator of interferon genes (STING) agonist. In sum, our machine learning-enabled screening approach presents an efficient immunomodulator discovery pipeline that has furnished a library of novel small molecules with a strong capacity to enhance or suppress innate immune signaling pathways to shape and improve prophylactic vaccination and immunotherapies." @default.
- W4382400963 created "2023-06-29" @default.
- W4382400963 creator A5008005518 @default.
- W4382400963 creator A5011785545 @default.
- W4382400963 creator A5015416261 @default.
- W4382400963 creator A5023302612 @default.
- W4382400963 creator A5023930281 @default.
- W4382400963 creator A5033112541 @default.
- W4382400963 creator A5036242692 @default.
- W4382400963 creator A5060982681 @default.
- W4382400963 date "2023-06-28" @default.
- W4382400963 modified "2023-10-16" @default.
- W4382400963 title "Data-driven discovery of innate immunomodulators via machine learning-guided high throughput screening" @default.
- W4382400963 cites W1510052597 @default.
- W4382400963 cites W1757990252 @default.
- W4382400963 cites W1898887656 @default.
- W4382400963 cites W1965583590 @default.
- W4382400963 cites W1974546926 @default.
- W4382400963 cites W1993952505 @default.
- W4382400963 cites W1997117545 @default.
- W4382400963 cites W1999177172 @default.
- W4382400963 cites W2001769615 @default.
- W4382400963 cites W2017254234 @default.
- W4382400963 cites W2027482274 @default.
- W4382400963 cites W2033757486 @default.
- W4382400963 cites W2041345682 @default.
- W4382400963 cites W2066818317 @default.
- W4382400963 cites W2075894130 @default.
- W4382400963 cites W2077291760 @default.
- W4382400963 cites W2117742111 @default.
- W4382400963 cites W2128897591 @default.
- W4382400963 cites W2135046866 @default.
- W4382400963 cites W2145330783 @default.
- W4382400963 cites W2149484379 @default.
- W4382400963 cites W2160694273 @default.
- W4382400963 cites W2163302303 @default.
- W4382400963 cites W2176516200 @default.
- W4382400963 cites W2339267986 @default.
- W4382400963 cites W2398077522 @default.
- W4382400963 cites W2626018758 @default.
- W4382400963 cites W2734898349 @default.
- W4382400963 cites W2883583109 @default.
- W4382400963 cites W2901719664 @default.
- W4382400963 cites W2901824420 @default.
- W4382400963 cites W2949671220 @default.
- W4382400963 cites W2982188507 @default.
- W4382400963 cites W3001189769 @default.
- W4382400963 cites W3011801711 @default.
- W4382400963 cites W3045928028 @default.
- W4382400963 cites W3061136593 @default.
- W4382400963 cites W3084129871 @default.
- W4382400963 cites W3088524266 @default.
- W4382400963 cites W3093332436 @default.
- W4382400963 cites W3094640617 @default.
- W4382400963 cites W3098269892 @default.
- W4382400963 cites W3100632886 @default.
- W4382400963 cites W3127320416 @default.
- W4382400963 cites W3144140615 @default.
- W4382400963 cites W3180442030 @default.
- W4382400963 cites W3202049465 @default.
- W4382400963 cites W3203397300 @default.
- W4382400963 cites W3206064784 @default.
- W4382400963 cites W4211049957 @default.
- W4382400963 cites W4214910967 @default.
- W4382400963 cites W4242320552 @default.
- W4382400963 cites W4252003911 @default.
- W4382400963 cites W4321611708 @default.
- W4382400963 doi "https://doi.org/10.1101/2023.06.26.546393" @default.
- W4382400963 hasPublicationYear "2023" @default.
- W4382400963 type Work @default.
- W4382400963 citedByCount "0" @default.
- W4382400963 crossrefType "posted-content" @default.
- W4382400963 hasAuthorship W4382400963A5008005518 @default.
- W4382400963 hasAuthorship W4382400963A5011785545 @default.
- W4382400963 hasAuthorship W4382400963A5015416261 @default.
- W4382400963 hasAuthorship W4382400963A5023302612 @default.
- W4382400963 hasAuthorship W4382400963A5023930281 @default.
- W4382400963 hasAuthorship W4382400963A5033112541 @default.
- W4382400963 hasAuthorship W4382400963A5036242692 @default.
- W4382400963 hasAuthorship W4382400963A5060982681 @default.
- W4382400963 hasBestOaLocation W43824009631 @default.
- W4382400963 hasConcept C111289621 @default.
- W4382400963 hasConcept C136449434 @default.
- W4382400963 hasConcept C203014093 @default.
- W4382400963 hasConcept C41008148 @default.
- W4382400963 hasConcept C60644358 @default.
- W4382400963 hasConcept C70721500 @default.
- W4382400963 hasConcept C74187038 @default.
- W4382400963 hasConcept C86803240 @default.
- W4382400963 hasConcept C8891405 @default.
- W4382400963 hasConceptScore W4382400963C111289621 @default.
- W4382400963 hasConceptScore W4382400963C136449434 @default.
- W4382400963 hasConceptScore W4382400963C203014093 @default.
- W4382400963 hasConceptScore W4382400963C41008148 @default.
- W4382400963 hasConceptScore W4382400963C60644358 @default.
- W4382400963 hasConceptScore W4382400963C70721500 @default.
- W4382400963 hasConceptScore W4382400963C74187038 @default.
- W4382400963 hasConceptScore W4382400963C86803240 @default.
- W4382400963 hasConceptScore W4382400963C8891405 @default.
- W4382400963 hasLocation W43824009631 @default.