Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382402912> ?p ?o ?g. }
- W4382402912 endingPage "5961" @default.
- W4382402912 startingPage "5961" @default.
- W4382402912 abstract "Optimization approaches that determine sensitive sensor nodes in a large-scale, linear time-invariant, and discrete-time dynamical system are examined under the assumption of independent and identically distributed measurement noise. This study offers two novel selection algorithms, namely an approximate convex relaxation method with the Newton method and a gradient greedy method, and confirms the performance of the selection methods, including a convex relaxation method with semidefinite programming (SDP) and a pure greedy optimization method proposed in the previous studies. The matrix determinant of the observability Gramian was employed for the evaluations of the sensor subsets, while its gradient and Hessian were derived for the proposed methods. In the demonstration using numerical and real-world examples, the proposed approximate greedy method showed superiority in the run time when the sensor numbers were roughly the same as the dimensions of the latent system. The relaxation method with SDP is confirmed to be the most reasonable approach for a system with randomly generated matrices of higher dimensions. However, the degradation of the optimization results was also confirmed in the case of real-world datasets, while the pure greedy selection obtained the most stable optimization results." @default.
- W4382402912 created "2023-06-29" @default.
- W4382402912 creator A5012602916 @default.
- W4382402912 creator A5027646710 @default.
- W4382402912 creator A5054423300 @default.
- W4382402912 creator A5059308761 @default.
- W4382402912 creator A5077522032 @default.
- W4382402912 creator A5086238401 @default.
- W4382402912 date "2023-06-27" @default.
- W4382402912 modified "2023-10-14" @default.
- W4382402912 title "Efficient Sensor Node Selection for Observability Gramian Optimization" @default.
- W4382402912 cites W1680189815 @default.
- W4382402912 cites W1833634424 @default.
- W4382402912 cites W1938602245 @default.
- W4382402912 cites W1965770593 @default.
- W4382402912 cites W1969626918 @default.
- W4382402912 cites W1979892370 @default.
- W4382402912 cites W1990313642 @default.
- W4382402912 cites W1993650522 @default.
- W4382402912 cites W1994410793 @default.
- W4382402912 cites W1996215314 @default.
- W4382402912 cites W2014356541 @default.
- W4382402912 cites W2020517183 @default.
- W4382402912 cites W2031503828 @default.
- W4382402912 cites W2035476608 @default.
- W4382402912 cites W2051779487 @default.
- W4382402912 cites W2053381548 @default.
- W4382402912 cites W2053565514 @default.
- W4382402912 cites W2058590322 @default.
- W4382402912 cites W2058892816 @default.
- W4382402912 cites W2062922230 @default.
- W4382402912 cites W2080914886 @default.
- W4382402912 cites W2100729440 @default.
- W4382402912 cites W2112823474 @default.
- W4382402912 cites W2132447022 @default.
- W4382402912 cites W2145825677 @default.
- W4382402912 cites W2153248178 @default.
- W4382402912 cites W2169207653 @default.
- W4382402912 cites W2176202464 @default.
- W4382402912 cites W2257394859 @default.
- W4382402912 cites W2257439149 @default.
- W4382402912 cites W2469556031 @default.
- W4382402912 cites W2528405353 @default.
- W4382402912 cites W2554424080 @default.
- W4382402912 cites W2582646431 @default.
- W4382402912 cites W2789476956 @default.
- W4382402912 cites W2890403598 @default.
- W4382402912 cites W2902442327 @default.
- W4382402912 cites W2955762689 @default.
- W4382402912 cites W2963595662 @default.
- W4382402912 cites W2964017122 @default.
- W4382402912 cites W2964020076 @default.
- W4382402912 cites W2964202295 @default.
- W4382402912 cites W2990440057 @default.
- W4382402912 cites W2993521327 @default.
- W4382402912 cites W3011038560 @default.
- W4382402912 cites W3031119141 @default.
- W4382402912 cites W3032072573 @default.
- W4382402912 cites W3042140472 @default.
- W4382402912 cites W3087694753 @default.
- W4382402912 cites W3093094851 @default.
- W4382402912 cites W3104009841 @default.
- W4382402912 cites W3104821291 @default.
- W4382402912 cites W3134720670 @default.
- W4382402912 cites W3135144629 @default.
- W4382402912 cites W3158434146 @default.
- W4382402912 cites W3159623322 @default.
- W4382402912 cites W3164982507 @default.
- W4382402912 cites W3169530841 @default.
- W4382402912 cites W3182885311 @default.
- W4382402912 cites W3185405991 @default.
- W4382402912 cites W3208290324 @default.
- W4382402912 cites W3217655115 @default.
- W4382402912 cites W4206234638 @default.
- W4382402912 cites W4210968171 @default.
- W4382402912 cites W4220715685 @default.
- W4382402912 cites W4238160257 @default.
- W4382402912 cites W4250589301 @default.
- W4382402912 cites W4280530160 @default.
- W4382402912 cites W4280586365 @default.
- W4382402912 cites W4283314183 @default.
- W4382402912 cites W4286544629 @default.
- W4382402912 cites W4288064561 @default.
- W4382402912 cites W4292070111 @default.
- W4382402912 cites W4292265186 @default.
- W4382402912 cites W4293508618 @default.
- W4382402912 cites W4307217068 @default.
- W4382402912 cites W4309878269 @default.
- W4382402912 cites W4310052612 @default.
- W4382402912 cites W4313318028 @default.
- W4382402912 cites W4366426213 @default.
- W4382402912 cites W566443111 @default.
- W4382402912 doi "https://doi.org/10.3390/s23135961" @default.
- W4382402912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37447809" @default.
- W4382402912 hasPublicationYear "2023" @default.
- W4382402912 type Work @default.
- W4382402912 citedByCount "0" @default.
- W4382402912 crossrefType "journal-article" @default.