Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382448944> ?p ?o ?g. }
- W4382448944 endingPage "2784" @default.
- W4382448944 startingPage "2767" @default.
- W4382448944 abstract "Abstract Perfect nonlinear (PN) functions over a finite field, whose study is also motivated by practical applications to Cryptography, have been the subject of several recent papers where the main problems, such as effective constructions and non-existence results, are considered. So far, all contributions have focused on PN functions represented by polynomials, and their constructions. Unfortunately, for polynomial PN functions, the approach based on Hasse–Weil type bounds applied to function fields can only provide non-existence results in a small degree regime. In this paper, we investigate the non-existence problem of rational perfect nonlinear functions over a finite field. Our approach makes it possible to use deep results about the number of points of algebraic varieties over finite fields. Our main result is that no PN rational function f / g with $$f,gin mathbb {F}_q[X]$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>X</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:mrow> </mml:math> exists when certain mild arithmetical conditions involving the degree of f ( X ) and g ( X ) are satisfied." @default.
- W4382448944 created "2023-06-29" @default.
- W4382448944 creator A5070528571 @default.
- W4382448944 creator A5075822892 @default.
- W4382448944 date "2023-05-02" @default.
- W4382448944 modified "2023-10-06" @default.
- W4382448944 title "Investigating rational perfect nonlinear functions" @default.
- W4382448944 cites W1480591395 @default.
- W4382448944 cites W1482575219 @default.
- W4382448944 cites W1528065150 @default.
- W4382448944 cites W1562191210 @default.
- W4382448944 cites W1562551828 @default.
- W4382448944 cites W1563907129 @default.
- W4382448944 cites W1583296633 @default.
- W4382448944 cites W1629301835 @default.
- W4382448944 cites W1707592146 @default.
- W4382448944 cites W1963623275 @default.
- W4382448944 cites W1975599509 @default.
- W4382448944 cites W1979802565 @default.
- W4382448944 cites W2010016384 @default.
- W4382448944 cites W2017453435 @default.
- W4382448944 cites W2021094554 @default.
- W4382448944 cites W2022841156 @default.
- W4382448944 cites W2025590616 @default.
- W4382448944 cites W2044472948 @default.
- W4382448944 cites W2048606081 @default.
- W4382448944 cites W2048958542 @default.
- W4382448944 cites W2052178764 @default.
- W4382448944 cites W2061710385 @default.
- W4382448944 cites W2064003955 @default.
- W4382448944 cites W2068180810 @default.
- W4382448944 cites W2073909245 @default.
- W4382448944 cites W2078168683 @default.
- W4382448944 cites W21535682 @default.
- W4382448944 cites W2266687050 @default.
- W4382448944 cites W2285925216 @default.
- W4382448944 cites W2497892829 @default.
- W4382448944 cites W2913561098 @default.
- W4382448944 cites W2963017819 @default.
- W4382448944 cites W2963329610 @default.
- W4382448944 cites W2963863447 @default.
- W4382448944 cites W3006491233 @default.
- W4382448944 cites W3032983062 @default.
- W4382448944 cites W3103665618 @default.
- W4382448944 cites W3107426376 @default.
- W4382448944 cites W3122075425 @default.
- W4382448944 cites W3129891137 @default.
- W4382448944 cites W3160156686 @default.
- W4382448944 cites W4213002315 @default.
- W4382448944 cites W4229569780 @default.
- W4382448944 cites W4362193924 @default.
- W4382448944 cites W6553417 @default.
- W4382448944 doi "https://doi.org/10.1007/s10231-023-01339-6" @default.
- W4382448944 hasPublicationYear "2023" @default.
- W4382448944 type Work @default.
- W4382448944 citedByCount "0" @default.
- W4382448944 crossrefType "journal-article" @default.
- W4382448944 hasAuthorship W4382448944A5070528571 @default.
- W4382448944 hasAuthorship W4382448944A5075822892 @default.
- W4382448944 hasBestOaLocation W43824489441 @default.
- W4382448944 hasConcept C112343008 @default.
- W4382448944 hasConcept C11413529 @default.
- W4382448944 hasConcept C118615104 @default.
- W4382448944 hasConcept C121332964 @default.
- W4382448944 hasConcept C134306372 @default.
- W4382448944 hasConcept C14036430 @default.
- W4382448944 hasConcept C158622935 @default.
- W4382448944 hasConcept C202444582 @default.
- W4382448944 hasConcept C24890656 @default.
- W4382448944 hasConcept C2775997480 @default.
- W4382448944 hasConcept C33923547 @default.
- W4382448944 hasConcept C41008148 @default.
- W4382448944 hasConcept C62520636 @default.
- W4382448944 hasConcept C75190567 @default.
- W4382448944 hasConcept C78458016 @default.
- W4382448944 hasConcept C86803240 @default.
- W4382448944 hasConcept C9376300 @default.
- W4382448944 hasConcept C9652623 @default.
- W4382448944 hasConceptScore W4382448944C112343008 @default.
- W4382448944 hasConceptScore W4382448944C11413529 @default.
- W4382448944 hasConceptScore W4382448944C118615104 @default.
- W4382448944 hasConceptScore W4382448944C121332964 @default.
- W4382448944 hasConceptScore W4382448944C134306372 @default.
- W4382448944 hasConceptScore W4382448944C14036430 @default.
- W4382448944 hasConceptScore W4382448944C158622935 @default.
- W4382448944 hasConceptScore W4382448944C202444582 @default.
- W4382448944 hasConceptScore W4382448944C24890656 @default.
- W4382448944 hasConceptScore W4382448944C2775997480 @default.
- W4382448944 hasConceptScore W4382448944C33923547 @default.
- W4382448944 hasConceptScore W4382448944C41008148 @default.
- W4382448944 hasConceptScore W4382448944C62520636 @default.
- W4382448944 hasConceptScore W4382448944C75190567 @default.
- W4382448944 hasConceptScore W4382448944C78458016 @default.
- W4382448944 hasConceptScore W4382448944C86803240 @default.
- W4382448944 hasConceptScore W4382448944C9376300 @default.
- W4382448944 hasConceptScore W4382448944C9652623 @default.
- W4382448944 hasFunder F4320326523 @default.
- W4382448944 hasIssue "6" @default.