Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382449345> ?p ?o ?g. }
- W4382449345 abstract "Bridge pile capacity is a vital criterion used to assure the durability and stability of a bridge pile foundation. In fact, reliably predicting the pile capacity plays a significant role in supporting data-driven decisions for the design, construction, and quality assurance of bridge piles. While previous studies have examined black-box machine learning (ML) models for bridge pile capacity prediction, little-to-no studies were directed to integrating expert knowledge and large bridge pile data to develop an easy-to-interpret white-box ML model for estimating bridge pile capacity. Therefore, this study proposed a novel white-box expert knowledge–guided Bayesian belief network (BBN) to accurately estimate bridge pile capacity. The proposed BBN was developed based on (1) a comprehensive bridge pile data set of 2,735 data points collected from a large bridge project, (2) expert knowledge obtained from eight bridge and geotechnical experts using the systematic three-round Delphi method, (3) a variety of data preprocessing methods, and (4) parametric Bayesian learning applied to different graphical models. The performance of four different BBN models was assessed and compared based on an unseen testing set to evaluate the generalizability of the proposed BBN model. Model evaluation results indicated that the optimal BBN is a tree-augmented Bayesian network that can estimate the discretized capacity of bridge piles with an accuracy of 90.51%. The proposed BBN model was further validated by testing its generalizability performance on another data from a different location. This study contributed to the body of knowledge by providing a novel, intrinsically interpretable, and robust data-driven expert knowledge–guided model for accurately estimating the bearing capacity of bridge piles. Ultimately, this paper aims to attract more research and practical attention toward developing knowledge-based white-box models for advancing the predictive analytics of bridge pile-related data and decisions." @default.
- W4382449345 created "2023-06-29" @default.
- W4382449345 creator A5017335394 @default.
- W4382449345 creator A5027328912 @default.
- W4382449345 creator A5032916737 @default.
- W4382449345 date "2023-09-01" @default.
- W4382449345 modified "2023-10-06" @default.
- W4382449345 title "Expert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity" @default.
- W4382449345 cites W1111699446 @default.
- W4382449345 cites W154041102 @default.
- W4382449345 cites W1847473223 @default.
- W4382449345 cites W1906257803 @default.
- W4382449345 cites W1976364950 @default.
- W4382449345 cites W1991342649 @default.
- W4382449345 cites W1994442780 @default.
- W4382449345 cites W1997052242 @default.
- W4382449345 cites W2003665746 @default.
- W4382449345 cites W2007022163 @default.
- W4382449345 cites W2018836319 @default.
- W4382449345 cites W2025721547 @default.
- W4382449345 cites W2026846567 @default.
- W4382449345 cites W2044529823 @default.
- W4382449345 cites W2048430744 @default.
- W4382449345 cites W2048574864 @default.
- W4382449345 cites W2051355220 @default.
- W4382449345 cites W2082362569 @default.
- W4382449345 cites W2086282769 @default.
- W4382449345 cites W2093883030 @default.
- W4382449345 cites W2097683668 @default.
- W4382449345 cites W2100533378 @default.
- W4382449345 cites W2101066084 @default.
- W4382449345 cites W2102771921 @default.
- W4382449345 cites W2108986847 @default.
- W4382449345 cites W2116439621 @default.
- W4382449345 cites W2135511047 @default.
- W4382449345 cites W2149447411 @default.
- W4382449345 cites W2161471882 @default.
- W4382449345 cites W2164063121 @default.
- W4382449345 cites W2282255374 @default.
- W4382449345 cites W2339392821 @default.
- W4382449345 cites W2339519627 @default.
- W4382449345 cites W2521002152 @default.
- W4382449345 cites W2549473102 @default.
- W4382449345 cites W2755545371 @default.
- W4382449345 cites W2757169940 @default.
- W4382449345 cites W2769784182 @default.
- W4382449345 cites W2781518033 @default.
- W4382449345 cites W2788277788 @default.
- W4382449345 cites W2883939481 @default.
- W4382449345 cites W2905322176 @default.
- W4382449345 cites W2943972830 @default.
- W4382449345 cites W2945976633 @default.
- W4382449345 cites W2964209429 @default.
- W4382449345 cites W2971036762 @default.
- W4382449345 cites W2981416566 @default.
- W4382449345 cites W2981836045 @default.
- W4382449345 cites W2997548294 @default.
- W4382449345 cites W3011594722 @default.
- W4382449345 cites W3015948512 @default.
- W4382449345 cites W3034695302 @default.
- W4382449345 cites W3037166419 @default.
- W4382449345 cites W3111140248 @default.
- W4382449345 cites W3112932631 @default.
- W4382449345 cites W3138378275 @default.
- W4382449345 cites W3163993681 @default.
- W4382449345 cites W3211512232 @default.
- W4382449345 cites W4207014325 @default.
- W4382449345 cites W4210798959 @default.
- W4382449345 cites W4211116959 @default.
- W4382449345 cites W4212930661 @default.
- W4382449345 cites W4213113494 @default.
- W4382449345 cites W4214576110 @default.
- W4382449345 cites W4220819342 @default.
- W4382449345 cites W4230774483 @default.
- W4382449345 cites W4232532721 @default.
- W4382449345 cites W4236295778 @default.
- W4382449345 cites W4250260026 @default.
- W4382449345 cites W4256617328 @default.
- W4382449345 cites W4283750508 @default.
- W4382449345 cites W4289174225 @default.
- W4382449345 cites W4292265082 @default.
- W4382449345 cites W792928115 @default.
- W4382449345 doi "https://doi.org/10.1061/jbenf2.beeng-6096" @default.
- W4382449345 hasPublicationYear "2023" @default.
- W4382449345 type Work @default.
- W4382449345 citedByCount "2" @default.
- W4382449345 countsByYear W43824493452023 @default.
- W4382449345 crossrefType "journal-article" @default.
- W4382449345 hasAuthorship W4382449345A5017335394 @default.
- W4382449345 hasAuthorship W4382449345A5027328912 @default.
- W4382449345 hasAuthorship W4382449345A5032916737 @default.
- W4382449345 hasConcept C100776233 @default.
- W4382449345 hasConcept C105795698 @default.
- W4382449345 hasConcept C117251300 @default.
- W4382449345 hasConcept C119560385 @default.
- W4382449345 hasConcept C119857082 @default.
- W4382449345 hasConcept C124101348 @default.
- W4382449345 hasConcept C126322002 @default.
- W4382449345 hasConcept C127413603 @default.
- W4382449345 hasConcept C154945302 @default.