Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382459095> ?p ?o ?g. }
- W4382459095 abstract "Background Phenotyping analysis that includes time course is useful for understanding the mechanisms and clinical management of postoperative delirium. However, postoperative delirium has not been fully phenotyped. Hypothesis-free categorization of heterogeneous symptoms may be useful for understanding the mechanisms underlying delirium, although evidence is currently lacking. Therefore, we aimed to explore the phenotypes of postoperative delirium following invasive cancer surgery using a data-driven approach with minimal prior knowledge. Methods We recruited patients who underwent elective invasive cancer resection. After surgery, participants completed 5 consecutive days of delirium assessments using the Delirium Rating Scale-Revised-98 (DRS-R-98) severity scale. We categorized 65 (13 questionnaire items/day × 5 days) dimensional DRS-R-98 scores using unsupervised machine learning (K-means clustering) to derive a small set of grouped features representing distinct symptoms across all participants. We then reapplied K-means clustering to this set of grouped features to delineate multiple clusters of delirium symptoms. Results Participants were 286 patients, of whom 91 developed delirium defined according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria. Following the first K-means clustering, we derived four grouped symptom features: (1) mixed motor, (2) cognitive and higher-order thinking domain with perceptual disturbance and thought content abnormalities, (3) acute and temporal response, and (4) sleep–wake cycle disturbance. Subsequent K-means clustering permitted classification of participants into seven subgroups: (i) cognitive and higher-order thinking domain dominant delirium, (ii) prolonged delirium, (iii) acute and brief delirium, (iv) subsyndromal delirium-enriched, (v) subsyndromal delirium-enriched with insomnia, (vi) insomnia, and (vii) fit. Conclusion We found that patients who have undergone invasive cancer resection can be delineated using unsupervised machine learning into three delirium clusters, two subsyndromal delirium clusters, and an insomnia cluster. Validation of clusters and research into the pathophysiology underlying each cluster will help to elucidate the mechanisms of postoperative delirium after invasive cancer surgery." @default.
- W4382459095 created "2023-06-29" @default.
- W4382459095 creator A5018058731 @default.
- W4382459095 creator A5028514279 @default.
- W4382459095 creator A5035520186 @default.
- W4382459095 creator A5054786577 @default.
- W4382459095 creator A5057200745 @default.
- W4382459095 creator A5062146842 @default.
- W4382459095 creator A5062709079 @default.
- W4382459095 creator A5068022677 @default.
- W4382459095 creator A5070444406 @default.
- W4382459095 creator A5071281836 @default.
- W4382459095 creator A5091260521 @default.
- W4382459095 date "2023-06-27" @default.
- W4382459095 modified "2023-09-26" @default.
- W4382459095 title "Data-driven categorization of postoperative delirium symptoms using unsupervised machine learning" @default.
- W4382459095 cites W1847168837 @default.
- W4382459095 cites W1886943398 @default.
- W4382459095 cites W1966778558 @default.
- W4382459095 cites W1978502700 @default.
- W4382459095 cites W1991312589 @default.
- W4382459095 cites W2005656575 @default.
- W4382459095 cites W2005951225 @default.
- W4382459095 cites W2008854521 @default.
- W4382459095 cites W2028964226 @default.
- W4382459095 cites W2031300292 @default.
- W4382459095 cites W2032738910 @default.
- W4382459095 cites W2038369419 @default.
- W4382459095 cites W2044251644 @default.
- W4382459095 cites W2058161128 @default.
- W4382459095 cites W2058815839 @default.
- W4382459095 cites W2077691311 @default.
- W4382459095 cites W2079916073 @default.
- W4382459095 cites W2080042187 @default.
- W4382459095 cites W2085819476 @default.
- W4382459095 cites W2097405387 @default.
- W4382459095 cites W2099816614 @default.
- W4382459095 cites W2108486453 @default.
- W4382459095 cites W2120678297 @default.
- W4382459095 cites W2134535009 @default.
- W4382459095 cites W2148080316 @default.
- W4382459095 cites W2154774968 @default.
- W4382459095 cites W2158469851 @default.
- W4382459095 cites W2164432989 @default.
- W4382459095 cites W2167311298 @default.
- W4382459095 cites W2168640909 @default.
- W4382459095 cites W2168743921 @default.
- W4382459095 cites W2396365747 @default.
- W4382459095 cites W2577728922 @default.
- W4382459095 cites W2617645000 @default.
- W4382459095 cites W2741472643 @default.
- W4382459095 cites W2747610372 @default.
- W4382459095 cites W2775173797 @default.
- W4382459095 cites W2776878127 @default.
- W4382459095 cites W2882992260 @default.
- W4382459095 cites W2883693266 @default.
- W4382459095 cites W2888022990 @default.
- W4382459095 cites W2888110836 @default.
- W4382459095 cites W2908251749 @default.
- W4382459095 cites W2912852742 @default.
- W4382459095 cites W2995094774 @default.
- W4382459095 cites W3009730158 @default.
- W4382459095 cites W3080748802 @default.
- W4382459095 cites W3153522623 @default.
- W4382459095 cites W4226193660 @default.
- W4382459095 cites W4238371937 @default.
- W4382459095 cites W4288902442 @default.
- W4382459095 doi "https://doi.org/10.3389/fpsyt.2023.1205605" @default.
- W4382459095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37441147" @default.
- W4382459095 hasPublicationYear "2023" @default.
- W4382459095 type Work @default.
- W4382459095 citedByCount "0" @default.
- W4382459095 crossrefType "journal-article" @default.
- W4382459095 hasAuthorship W4382459095A5018058731 @default.
- W4382459095 hasAuthorship W4382459095A5028514279 @default.
- W4382459095 hasAuthorship W4382459095A5035520186 @default.
- W4382459095 hasAuthorship W4382459095A5054786577 @default.
- W4382459095 hasAuthorship W4382459095A5057200745 @default.
- W4382459095 hasAuthorship W4382459095A5062146842 @default.
- W4382459095 hasAuthorship W4382459095A5062709079 @default.
- W4382459095 hasAuthorship W4382459095A5068022677 @default.
- W4382459095 hasAuthorship W4382459095A5070444406 @default.
- W4382459095 hasAuthorship W4382459095A5071281836 @default.
- W4382459095 hasAuthorship W4382459095A5091260521 @default.
- W4382459095 hasBestOaLocation W43824590951 @default.
- W4382459095 hasConcept C118552586 @default.
- W4382459095 hasConcept C138496976 @default.
- W4382459095 hasConcept C154945302 @default.
- W4382459095 hasConcept C15744967 @default.
- W4382459095 hasConcept C169900460 @default.
- W4382459095 hasConcept C177264268 @default.
- W4382459095 hasConcept C199360897 @default.
- W4382459095 hasConcept C2779753318 @default.
- W4382459095 hasConcept C41008148 @default.
- W4382459095 hasConcept C70410870 @default.
- W4382459095 hasConcept C71924100 @default.
- W4382459095 hasConcept C83849319 @default.
- W4382459095 hasConcept C94124525 @default.
- W4382459095 hasConceptScore W4382459095C118552586 @default.
- W4382459095 hasConceptScore W4382459095C138496976 @default.