Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382468081> ?p ?o ?g. }
- W4382468081 endingPage "83068" @default.
- W4382468081 startingPage "83052" @default.
- W4382468081 abstract "One of the key goals of Informetrics is to identify citation-based popular articles among so many other aspects, such as determining popular research topics, identifying influential scholars, and predicting hot trends in science. These can be achieved by applying network science approaches to scientific networks and formulating the problem as a popular (most-cited) node ranking task. To rank the papers based on their future citation gain. In this work a deep learning based framework is proposed. Which helps in automatic node level feature extraction and can make node level prediction in dynamic graphs such as citation networks. To achieve this we have learned global ranking preserve d dimensional node embedding. We have only considered temporal features, which makes it suitable for generalisation to other networks. Although our model can consider node level explicit features also. Further we have given novel cost function which can be easily solve ranking problem for dynamic graphs using probabilistic regression method. Which can be easily optimised. Another novelty of our work is our model can be trained using different snapshots of the graph and different time. Further trained model can be used to make future prediction. The proposed model has been tested on an arXiv paper citation network using six standard information retrieval-based metrics. The results show that our proposed model outperforms, on average, other state-of-the-art static models as well as dynamic node ranking models. The outcome of this research study leads to informed data-driven decision-making in science, such as the allocation and distribution of research funds and investment in strategic research centers. When considering past time window size as 10 months and making prediction after 10 months our proposed model’s performance on various ranking based evaluation metrics are as follows: AUC-0.974, Kendal’s rank correlation tau-0.455, Precision- 0.643, Novelty-0.0456, Temporal novelty-0.375 and on NDCG-0.949. Our model is able to make long term trend prediction with just training on short time window." @default.
- W4382468081 created "2023-06-29" @default.
- W4382468081 creator A5021942199 @default.
- W4382468081 creator A5023227773 @default.
- W4382468081 creator A5025534417 @default.
- W4382468081 creator A5032447371 @default.
- W4382468081 creator A5038107615 @default.
- W4382468081 creator A5039995971 @default.
- W4382468081 creator A5051653696 @default.
- W4382468081 creator A5053642073 @default.
- W4382468081 creator A5070733020 @default.
- W4382468081 creator A5084720361 @default.
- W4382468081 date "2023-01-01" @default.
- W4382468081 modified "2023-09-30" @default.
- W4382468081 title "Predicting the Future Popularity of Academic Publications Using Deep Learning by Considering It as Temporal Citation Networks" @default.
- W4382468081 cites W1747769665 @default.
- W4382468081 cites W1787605394 @default.
- W4382468081 cites W1971040550 @default.
- W4382468081 cites W1971238791 @default.
- W4382468081 cites W1971937094 @default.
- W4382468081 cites W1991327379 @default.
- W4382468081 cites W2008620264 @default.
- W4382468081 cites W2009439092 @default.
- W4382468081 cites W2019672642 @default.
- W4382468081 cites W2034577262 @default.
- W4382468081 cites W2040751794 @default.
- W4382468081 cites W2061748089 @default.
- W4382468081 cites W2066636486 @default.
- W4382468081 cites W2069870183 @default.
- W4382468081 cites W2072182213 @default.
- W4382468081 cites W2086606646 @default.
- W4382468081 cites W2087194317 @default.
- W4382468081 cites W2088209891 @default.
- W4382468081 cites W2098153194 @default.
- W4382468081 cites W2099811601 @default.
- W4382468081 cites W2106488040 @default.
- W4382468081 cites W2110141564 @default.
- W4382468081 cites W2112796928 @default.
- W4382468081 cites W2116341502 @default.
- W4382468081 cites W2120867647 @default.
- W4382468081 cites W2128438887 @default.
- W4382468081 cites W2138170489 @default.
- W4382468081 cites W2151866568 @default.
- W4382468081 cites W2153007951 @default.
- W4382468081 cites W2157825442 @default.
- W4382468081 cites W2171410332 @default.
- W4382468081 cites W2171590421 @default.
- W4382468081 cites W2171817276 @default.
- W4382468081 cites W2219466445 @default.
- W4382468081 cites W2270330859 @default.
- W4382468081 cites W2277805675 @default.
- W4382468081 cites W2283825014 @default.
- W4382468081 cites W2403089479 @default.
- W4382468081 cites W2554605570 @default.
- W4382468081 cites W2585895356 @default.
- W4382468081 cites W2592929672 @default.
- W4382468081 cites W2604942799 @default.
- W4382468081 cites W2801588309 @default.
- W4382468081 cites W2803389808 @default.
- W4382468081 cites W2806388616 @default.
- W4382468081 cites W2902365885 @default.
- W4382468081 cites W2908288473 @default.
- W4382468081 cites W2919115771 @default.
- W4382468081 cites W2921756693 @default.
- W4382468081 cites W2946867074 @default.
- W4382468081 cites W2952706152 @default.
- W4382468081 cites W2962975498 @default.
- W4382468081 cites W2962992342 @default.
- W4382468081 cites W2971122475 @default.
- W4382468081 cites W3004621088 @default.
- W4382468081 cites W3018239759 @default.
- W4382468081 cites W3023428950 @default.
- W4382468081 cites W3037973691 @default.
- W4382468081 cites W3098007831 @default.
- W4382468081 cites W3098310411 @default.
- W4382468081 cites W3100330855 @default.
- W4382468081 cites W3102590789 @default.
- W4382468081 cites W3107590985 @default.
- W4382468081 cites W3136021864 @default.
- W4382468081 cites W3176707157 @default.
- W4382468081 cites W3200654197 @default.
- W4382468081 cites W3207844425 @default.
- W4382468081 cites W4210687304 @default.
- W4382468081 cites W4220656825 @default.
- W4382468081 cites W4226318346 @default.
- W4382468081 cites W4308745679 @default.
- W4382468081 cites W767067438 @default.
- W4382468081 doi "https://doi.org/10.1109/access.2023.3290906" @default.
- W4382468081 hasPublicationYear "2023" @default.
- W4382468081 type Work @default.
- W4382468081 citedByCount "3" @default.
- W4382468081 countsByYear W43824680812023 @default.
- W4382468081 crossrefType "journal-article" @default.
- W4382468081 hasAuthorship W4382468081A5021942199 @default.
- W4382468081 hasAuthorship W4382468081A5023227773 @default.
- W4382468081 hasAuthorship W4382468081A5025534417 @default.
- W4382468081 hasAuthorship W4382468081A5032447371 @default.
- W4382468081 hasAuthorship W4382468081A5038107615 @default.