Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382488100> ?p ?o ?g. }
- W4382488100 endingPage "1823" @default.
- W4382488100 startingPage "1823" @default.
- W4382488100 abstract "A multi-technology study of evapotranspiration was conducted on the tropical seasonal forest in Nonggang Karst of Guangxi. From January 2019 to June 2020, three independent methods, including the eddy covariance method (EC), resistance method and Penman–Monteith method (PM), were used to estimate the annual evapotranspiration (ET). We found that the estimated annual ET varied dramatically: with values of 456.66 mm (EC), 292.24 mm (resistance method) and 699.59 mm (PM), respectively. The values were all lower than the reference evapotranspiration (853.26 mm year−1) and potential evapotranspiration (1030.61 mm year−1). The EC method had an energy imbalance problem, with an annual energy closure of 46% at the annual scale. The annual estimate of evapotranspiration after a 100% energy closure correction was 915.03 mm, which was higher than the reference evapotranspiration (853.26 mm), so the corrected annual estimates were considered to be unreasonable. Comparing the resistance method with the EC method, it was found that not only is the annual evapotranspiration (ET) lower in the EC method, but the sensible heat flux is also lower, indicating that the resistivity method has lower energy closure than the EC method, suggesting that this method is not suitable for use in karst forests. When comparing the PM method with the EC method, surface conductivity is the most critical parameter. As the most difficult parameter to quantify in the Penman–Monteith equation, the key influencing factor, maximum stomatal conductance, was carefully explored. In the selection of maximum stomatal conductance, the sensitivity of annual evapotranspiration to maximum stomatal conductance values was first analyzed. It was found that the sensitivity is strong before 0.018 m s−1. When gsmax is 0.0025 m s−1, the annual evapotranspiration (456 mm) is equivalent to that of the EC method, and it slowly decreases after reaching 0.018 ms−1. This indicates that when gsmax is 0.0025 m s−1, the annual evapotranspiration is lower or higher than the critical value of the EC method. Therefore, different maximum stomatal conductance values will result in annual evapotranspiration based on the PM method being higher or lower than the annual evapotranspiration measured by the EC method. In order to obtain a more accurate maximum stomatal conductance, the surface conductance was calculated based on the PM equation, using the maximum stomatal conductance of four key tree species in the study area. The FAO universal fixed surface conductance of 1/70 m s−1 was used to constrain the calculation. The reason for this treatment is that the reference underlying surface of FAO is a uniformly flat and well-watered grassland, with a larger surface conductance than forests. The results showed that the selected maximum stomatal conductance values were all within a reasonable range, and the calculated annual evapotranspiration values were 267.28 mm, 596.42 mm, 699.59 mm and 736.90 mm, respectively. Considering the EC method as the lower limit (456.66 mm), the reference evapotranspiration as the upper limit (853.26 mm) and the specific vegetation in the study area, the estimated annual evapotranspiration of the primary forest in the Nonggang karst area of Guangxi (PM method) falls within the range of 596.42 mm to 736.90 mm, which is relatively reasonable." @default.
- W4382488100 created "2023-06-29" @default.
- W4382488100 creator A5022288088 @default.
- W4382488100 creator A5026025354 @default.
- W4382488100 creator A5026152215 @default.
- W4382488100 creator A5030398234 @default.
- W4382488100 creator A5041847248 @default.
- W4382488100 creator A5068377419 @default.
- W4382488100 creator A5079794931 @default.
- W4382488100 creator A5087284408 @default.
- W4382488100 creator A5091629710 @default.
- W4382488100 date "2023-05-10" @default.
- W4382488100 modified "2023-09-26" @default.
- W4382488100 title "Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain" @default.
- W4382488100 cites W1490789150 @default.
- W4382488100 cites W1968438283 @default.
- W4382488100 cites W1975255830 @default.
- W4382488100 cites W1975934888 @default.
- W4382488100 cites W1976193495 @default.
- W4382488100 cites W1985304904 @default.
- W4382488100 cites W1992153950 @default.
- W4382488100 cites W2000698817 @default.
- W4382488100 cites W2004541842 @default.
- W4382488100 cites W2005130712 @default.
- W4382488100 cites W2016948397 @default.
- W4382488100 cites W2025874293 @default.
- W4382488100 cites W2029435362 @default.
- W4382488100 cites W2040021523 @default.
- W4382488100 cites W2046838287 @default.
- W4382488100 cites W2051439571 @default.
- W4382488100 cites W2052592918 @default.
- W4382488100 cites W2059631183 @default.
- W4382488100 cites W2063273843 @default.
- W4382488100 cites W2069313066 @default.
- W4382488100 cites W2069951799 @default.
- W4382488100 cites W2081561063 @default.
- W4382488100 cites W2083626958 @default.
- W4382488100 cites W2084743731 @default.
- W4382488100 cites W2094158326 @default.
- W4382488100 cites W2097477412 @default.
- W4382488100 cites W2101723742 @default.
- W4382488100 cites W2102183854 @default.
- W4382488100 cites W2107584648 @default.
- W4382488100 cites W2108075977 @default.
- W4382488100 cites W2108550173 @default.
- W4382488100 cites W2114244813 @default.
- W4382488100 cites W2119895530 @default.
- W4382488100 cites W2127132651 @default.
- W4382488100 cites W2128677344 @default.
- W4382488100 cites W2144653885 @default.
- W4382488100 cites W2146421864 @default.
- W4382488100 cites W2148853171 @default.
- W4382488100 cites W2151277668 @default.
- W4382488100 cites W2153427373 @default.
- W4382488100 cites W2156711545 @default.
- W4382488100 cites W2156964984 @default.
- W4382488100 cites W2163606831 @default.
- W4382488100 cites W2172267151 @default.
- W4382488100 cites W2312552576 @default.
- W4382488100 cites W2324411590 @default.
- W4382488100 cites W2477078832 @default.
- W4382488100 cites W2512172680 @default.
- W4382488100 cites W2811488199 @default.
- W4382488100 cites W2901895615 @default.
- W4382488100 cites W2954455471 @default.
- W4382488100 cites W2970578364 @default.
- W4382488100 cites W2981464168 @default.
- W4382488100 cites W3190884587 @default.
- W4382488100 cites W4210749380 @default.
- W4382488100 cites W4237123086 @default.
- W4382488100 cites W4247497007 @default.
- W4382488100 cites W4307645510 @default.
- W4382488100 doi "https://doi.org/10.3390/w15101823" @default.
- W4382488100 hasPublicationYear "2023" @default.
- W4382488100 type Work @default.
- W4382488100 citedByCount "0" @default.
- W4382488100 crossrefType "journal-article" @default.
- W4382488100 hasAuthorship W4382488100A5022288088 @default.
- W4382488100 hasAuthorship W4382488100A5026025354 @default.
- W4382488100 hasAuthorship W4382488100A5026152215 @default.
- W4382488100 hasAuthorship W4382488100A5030398234 @default.
- W4382488100 hasAuthorship W4382488100A5041847248 @default.
- W4382488100 hasAuthorship W4382488100A5068377419 @default.
- W4382488100 hasAuthorship W4382488100A5079794931 @default.
- W4382488100 hasAuthorship W4382488100A5087284408 @default.
- W4382488100 hasAuthorship W4382488100A5091629710 @default.
- W4382488100 hasBestOaLocation W43824881001 @default.
- W4382488100 hasConcept C110872660 @default.
- W4382488100 hasConcept C127313418 @default.
- W4382488100 hasConcept C157517311 @default.
- W4382488100 hasConcept C161840515 @default.
- W4382488100 hasConcept C166957645 @default.
- W4382488100 hasConcept C176783924 @default.
- W4382488100 hasConcept C182348080 @default.
- W4382488100 hasConcept C183688256 @default.
- W4382488100 hasConcept C187320778 @default.
- W4382488100 hasConcept C18903297 @default.
- W4382488100 hasConcept C205649164 @default.