Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382501829> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4382501829 endingPage "607" @default.
- W4382501829 startingPage "603" @default.
- W4382501829 abstract "Noise quantification is fundamental to computed tomography (CT) image quality assessment and protocol optimization. This study proposes a deep learning-based framework, Single-scan Image Local Variance EstimatoR (SILVER), for estimating the local noise level within each region of a CT image. The local noise level will be referred to as a pixel-wise noise map.The SILVER architecture resembled a U-Net convolutional neural network with mean-square-error loss. To generate training data, 100 replicate scans were acquired of 3 anthropomorphic phantoms (chest, head, and pelvis) using a sequential scan mode; 120,000 phantom images were allocated into training, validation, and testing data sets. Pixel-wise noise maps were calculated for the phantom data by taking the per-pixel SD from the 100 replicate scans. For training, the convolutional neural network inputs consisted of phantom CT image patches, and the training targets consisted of the corresponding calculated pixel-wise noise maps. Following training, SILVER noise maps were evaluated using phantom and patient images. For evaluation on patient images, SILVER noise maps were compared with manual noise measurements at the heart, aorta, liver, spleen, and fat.When tested on phantom images, the SILVER noise map prediction closely matched the calculated noise map target (root mean square error <8 Hounsfield units). Within 10 patient examinations, SILVER noise map had an average percent error of 5% relative to manual region-of-interest measurements.The SILVER framework enabled accurate pixel-wise noise level estimation directly from patient images. This method is widely accessible because it operates in the image domain and requires only phantom data for training." @default.
- W4382501829 created "2023-06-30" @default.
- W4382501829 creator A5002650213 @default.
- W4382501829 creator A5047914292 @default.
- W4382501829 creator A5051084260 @default.
- W4382501829 creator A5056071386 @default.
- W4382501829 creator A5067668310 @default.
- W4382501829 date "2023-06-30" @default.
- W4382501829 modified "2023-09-27" @default.
- W4382501829 title "Deep Learning–Based Image Noise Quantification Framework for Computed Tomography" @default.
- W4382501829 cites W2000018988 @default.
- W4382501829 cites W2002611249 @default.
- W4382501829 cites W2100906168 @default.
- W4382501829 cites W2101061092 @default.
- W4382501829 cites W2221873563 @default.
- W4382501829 cites W2244685763 @default.
- W4382501829 cites W2319126251 @default.
- W4382501829 cites W2584483805 @default.
- W4382501829 cites W2604921713 @default.
- W4382501829 cites W2762996341 @default.
- W4382501829 cites W2945105565 @default.
- W4382501829 cites W3009733153 @default.
- W4382501829 cites W3110668506 @default.
- W4382501829 cites W3165054058 @default.
- W4382501829 cites W3168658886 @default.
- W4382501829 cites W4200145257 @default.
- W4382501829 cites W5064405 @default.
- W4382501829 doi "https://doi.org/10.1097/rct.0000000000001469" @default.
- W4382501829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37380148" @default.
- W4382501829 hasPublicationYear "2023" @default.
- W4382501829 type Work @default.
- W4382501829 citedByCount "0" @default.
- W4382501829 crossrefType "journal-article" @default.
- W4382501829 hasAuthorship W4382501829A5002650213 @default.
- W4382501829 hasAuthorship W4382501829A5047914292 @default.
- W4382501829 hasAuthorship W4382501829A5051084260 @default.
- W4382501829 hasAuthorship W4382501829A5056071386 @default.
- W4382501829 hasAuthorship W4382501829A5067668310 @default.
- W4382501829 hasConcept C104293457 @default.
- W4382501829 hasConcept C105795698 @default.
- W4382501829 hasConcept C115961682 @default.
- W4382501829 hasConcept C126838900 @default.
- W4382501829 hasConcept C139945424 @default.
- W4382501829 hasConcept C153180895 @default.
- W4382501829 hasConcept C154945302 @default.
- W4382501829 hasConcept C160633673 @default.
- W4382501829 hasConcept C187954543 @default.
- W4382501829 hasConcept C2989005 @default.
- W4382501829 hasConcept C31972630 @default.
- W4382501829 hasConcept C33923547 @default.
- W4382501829 hasConcept C35772409 @default.
- W4382501829 hasConcept C41008148 @default.
- W4382501829 hasConcept C544519230 @default.
- W4382501829 hasConcept C55020928 @default.
- W4382501829 hasConcept C71924100 @default.
- W4382501829 hasConcept C81363708 @default.
- W4382501829 hasConcept C99498987 @default.
- W4382501829 hasConceptScore W4382501829C104293457 @default.
- W4382501829 hasConceptScore W4382501829C105795698 @default.
- W4382501829 hasConceptScore W4382501829C115961682 @default.
- W4382501829 hasConceptScore W4382501829C126838900 @default.
- W4382501829 hasConceptScore W4382501829C139945424 @default.
- W4382501829 hasConceptScore W4382501829C153180895 @default.
- W4382501829 hasConceptScore W4382501829C154945302 @default.
- W4382501829 hasConceptScore W4382501829C160633673 @default.
- W4382501829 hasConceptScore W4382501829C187954543 @default.
- W4382501829 hasConceptScore W4382501829C2989005 @default.
- W4382501829 hasConceptScore W4382501829C31972630 @default.
- W4382501829 hasConceptScore W4382501829C33923547 @default.
- W4382501829 hasConceptScore W4382501829C35772409 @default.
- W4382501829 hasConceptScore W4382501829C41008148 @default.
- W4382501829 hasConceptScore W4382501829C544519230 @default.
- W4382501829 hasConceptScore W4382501829C55020928 @default.
- W4382501829 hasConceptScore W4382501829C71924100 @default.
- W4382501829 hasConceptScore W4382501829C81363708 @default.
- W4382501829 hasConceptScore W4382501829C99498987 @default.
- W4382501829 hasIssue "4" @default.
- W4382501829 hasLocation W43825018291 @default.
- W4382501829 hasLocation W43825018292 @default.
- W4382501829 hasOpenAccess W4382501829 @default.
- W4382501829 hasPrimaryLocation W43825018291 @default.
- W4382501829 hasRelatedWork W1986448253 @default.
- W4382501829 hasRelatedWork W2215132873 @default.
- W4382501829 hasRelatedWork W2763690237 @default.
- W4382501829 hasRelatedWork W2790296010 @default.
- W4382501829 hasRelatedWork W2888252104 @default.
- W4382501829 hasRelatedWork W2912251332 @default.
- W4382501829 hasRelatedWork W3118352991 @default.
- W4382501829 hasRelatedWork W3194988825 @default.
- W4382501829 hasRelatedWork W4319443769 @default.
- W4382501829 hasRelatedWork W2004083297 @default.
- W4382501829 hasVolume "47" @default.
- W4382501829 isParatext "false" @default.
- W4382501829 isRetracted "false" @default.
- W4382501829 workType "article" @default.