Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382502080> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4382502080 abstract "Abstract Background Liver fibrosis is an early stage of liver cirrhosis. As a reversible lesion before cirrhosis, liver failure, and liver cancer, it has been a target for drug discovery. Many antifibrotic candidates have shown promising results in experimental animal models; however, due to adverse clinical reactions, most antifibrotic agents are still preclinical. Therefore, rodent models have been used to examine the histopathological differences between the control and treatment groups to evaluate the efficacy of anti-fibrotic agents in non-clinical research. In addition, with improvements in digital image analysis incorporating artificial intelligence (AI), a few researchers have developed an automated quantification of fibrosis. However, the performance of multiple deep learning algorithms for the optimal quantification of hepatic fibrosis has not been evaluated. Here, we investigated three different localization algorithms, mask R-CNN, DeepLabV3 + , and SSD, to detect hepatic fibrosis. Results 5750 images with 7503 annotations were trained using the three algorithms, and the model performance was evaluated in large-scale images and compared to the training images. The results showed that the precision values were comparable among the algorithms. However, there was a gap in the recall, leading to a difference in model accuracy. The mask R-CNN outperformed the recall value (0.93) and showed the closest prediction results to the annotation for detecting hepatic fibrosis among the algorithms. DeepLabV3 + also showed good performance; however, it had limitations in the misprediction of hepatic fibrosis as inflammatory cells and connective tissue. The trained SSD showed the lowest performance and was limited in predicting hepatic fibrosis compared to the other algorithms because of its low recall value (0.75). Conclusions We suggest it would be a more useful tool to apply segmentation algorithms in implementing AI algorithms to predict hepatic fibrosis in non-clinical studies." @default.
- W4382502080 created "2023-06-30" @default.
- W4382502080 creator A5002496315 @default.
- W4382502080 creator A5010313638 @default.
- W4382502080 creator A5017770275 @default.
- W4382502080 creator A5025182744 @default.
- W4382502080 creator A5025919672 @default.
- W4382502080 creator A5038438701 @default.
- W4382502080 creator A5044280753 @default.
- W4382502080 creator A5045048821 @default.
- W4382502080 creator A5047961867 @default.
- W4382502080 date "2023-06-28" @default.
- W4382502080 modified "2023-10-15" @default.
- W4382502080 title "Segmentation algorithm can be used for detecting hepatic fibrosis in SD rat" @default.
- W4382502080 cites W1553544778 @default.
- W4382502080 cites W1981900811 @default.
- W4382502080 cites W2014084406 @default.
- W4382502080 cites W2035042988 @default.
- W4382502080 cites W2036313720 @default.
- W4382502080 cites W2067740038 @default.
- W4382502080 cites W2075678861 @default.
- W4382502080 cites W2087829753 @default.
- W4382502080 cites W2132290252 @default.
- W4382502080 cites W2588964480 @default.
- W4382502080 cites W2608331152 @default.
- W4382502080 cites W2963150697 @default.
- W4382502080 cites W2964309882 @default.
- W4382502080 cites W2993809459 @default.
- W4382502080 cites W3014599953 @default.
- W4382502080 cites W3015981394 @default.
- W4382502080 cites W3106250896 @default.
- W4382502080 cites W3138551680 @default.
- W4382502080 cites W3201265314 @default.
- W4382502080 cites W4200022404 @default.
- W4382502080 cites W4283077806 @default.
- W4382502080 doi "https://doi.org/10.1186/s42826-023-00167-2" @default.
- W4382502080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37381051" @default.
- W4382502080 hasPublicationYear "2023" @default.
- W4382502080 type Work @default.
- W4382502080 citedByCount "0" @default.
- W4382502080 crossrefType "journal-article" @default.
- W4382502080 hasAuthorship W4382502080A5002496315 @default.
- W4382502080 hasAuthorship W4382502080A5010313638 @default.
- W4382502080 hasAuthorship W4382502080A5017770275 @default.
- W4382502080 hasAuthorship W4382502080A5025182744 @default.
- W4382502080 hasAuthorship W4382502080A5025919672 @default.
- W4382502080 hasAuthorship W4382502080A5038438701 @default.
- W4382502080 hasAuthorship W4382502080A5044280753 @default.
- W4382502080 hasAuthorship W4382502080A5045048821 @default.
- W4382502080 hasAuthorship W4382502080A5047961867 @default.
- W4382502080 hasBestOaLocation W43825020801 @default.
- W4382502080 hasConcept C11413529 @default.
- W4382502080 hasConcept C126322002 @default.
- W4382502080 hasConcept C154945302 @default.
- W4382502080 hasConcept C2777214474 @default.
- W4382502080 hasConcept C2780559512 @default.
- W4382502080 hasConcept C2993667909 @default.
- W4382502080 hasConcept C41008148 @default.
- W4382502080 hasConcept C71924100 @default.
- W4382502080 hasConcept C81669768 @default.
- W4382502080 hasConceptScore W4382502080C11413529 @default.
- W4382502080 hasConceptScore W4382502080C126322002 @default.
- W4382502080 hasConceptScore W4382502080C154945302 @default.
- W4382502080 hasConceptScore W4382502080C2777214474 @default.
- W4382502080 hasConceptScore W4382502080C2780559512 @default.
- W4382502080 hasConceptScore W4382502080C2993667909 @default.
- W4382502080 hasConceptScore W4382502080C41008148 @default.
- W4382502080 hasConceptScore W4382502080C71924100 @default.
- W4382502080 hasConceptScore W4382502080C81669768 @default.
- W4382502080 hasFunder F4320322014 @default.
- W4382502080 hasIssue "1" @default.
- W4382502080 hasLocation W43825020801 @default.
- W4382502080 hasLocation W43825020802 @default.
- W4382502080 hasOpenAccess W4382502080 @default.
- W4382502080 hasPrimaryLocation W43825020801 @default.
- W4382502080 hasRelatedWork W1510211700 @default.
- W4382502080 hasRelatedWork W1984717806 @default.
- W4382502080 hasRelatedWork W2360214070 @default.
- W4382502080 hasRelatedWork W2360685076 @default.
- W4382502080 hasRelatedWork W2369088725 @default.
- W4382502080 hasRelatedWork W2386361098 @default.
- W4382502080 hasRelatedWork W2394461006 @default.
- W4382502080 hasRelatedWork W2770458351 @default.
- W4382502080 hasRelatedWork W3160748851 @default.
- W4382502080 hasRelatedWork W3183402843 @default.
- W4382502080 hasVolume "39" @default.
- W4382502080 isParatext "false" @default.
- W4382502080 isRetracted "false" @default.
- W4382502080 workType "article" @default.