Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382502367> ?p ?o ?g. }
- W4382502367 abstract "Abstract Operando wide‐field optical microscopy imaging yields a wealth of information about the reactivity of metal interfaces, yet the data are often unstructured and challenging to process. In this study, the power of unsupervised machine learning (ML) algorithms is harnessed to analyze chemical reactivity images obtained dynamically by reflectivity microscopy in combination with ex situ scanning electron microscopy to identify and cluster the chemical reactivity of particles in Al alloy. The ML analysis uncovers three distinct clusters of reactivity from unlabeled datasets. A detailed examination of representative reactivity patterns confirms the chemical communication of generated OH − fluxes within particles, as supported by statistical analysis of size distribution and finite element modelling (FEM). The ML procedures also reveal statistically significant patterns of reactivity under dynamic conditions, such as pH acidification. The results align well with a numerical model of chemical communication, underscoring the synergy between data‐driven ML and physics‐driven FEM approaches." @default.
- W4382502367 created "2023-06-30" @default.
- W4382502367 creator A5015089971 @default.
- W4382502367 creator A5034668283 @default.
- W4382502367 creator A5043474616 @default.
- W4382502367 creator A5056511373 @default.
- W4382502367 creator A5081577635 @default.
- W4382502367 creator A5081675173 @default.
- W4382502367 date "2023-06-29" @default.
- W4382502367 modified "2023-10-06" @default.
- W4382502367 title "Unsupervised Analysis of Optical Imaging Data for the Discovery of Reactivity Patterns in Metal Alloy" @default.
- W4382502367 cites W1542207050 @default.
- W4382502367 cites W1979832686 @default.
- W4382502367 cites W2000731273 @default.
- W4382502367 cites W2004447262 @default.
- W4382502367 cites W2106066681 @default.
- W4382502367 cites W2607070365 @default.
- W4382502367 cites W2777416523 @default.
- W4382502367 cites W2795043060 @default.
- W4382502367 cites W2889296340 @default.
- W4382502367 cites W2895359947 @default.
- W4382502367 cites W2895731624 @default.
- W4382502367 cites W2900330699 @default.
- W4382502367 cites W2959796720 @default.
- W4382502367 cites W2974146427 @default.
- W4382502367 cites W2990575116 @default.
- W4382502367 cites W2992764020 @default.
- W4382502367 cites W2994187421 @default.
- W4382502367 cites W3016724737 @default.
- W4382502367 cites W3080898477 @default.
- W4382502367 cites W3105941260 @default.
- W4382502367 cites W3110318829 @default.
- W4382502367 cites W3127978223 @default.
- W4382502367 cites W3131975258 @default.
- W4382502367 cites W3143418323 @default.
- W4382502367 cites W3153534119 @default.
- W4382502367 cites W3173107846 @default.
- W4382502367 cites W3175680574 @default.
- W4382502367 cites W3201322939 @default.
- W4382502367 cites W3202082522 @default.
- W4382502367 cites W3210740626 @default.
- W4382502367 cites W3217072612 @default.
- W4382502367 cites W4210558868 @default.
- W4382502367 cites W4225311862 @default.
- W4382502367 cites W4226400123 @default.
- W4382502367 cites W4280501986 @default.
- W4382502367 cites W4283834589 @default.
- W4382502367 cites W4286559919 @default.
- W4382502367 cites W4294025371 @default.
- W4382502367 cites W4303488457 @default.
- W4382502367 cites W4307715791 @default.
- W4382502367 cites W4313907594 @default.
- W4382502367 cites W4315927914 @default.
- W4382502367 cites W4324045192 @default.
- W4382502367 cites W4324137231 @default.
- W4382502367 cites W4366822737 @default.
- W4382502367 cites W4380873955 @default.
- W4382502367 doi "https://doi.org/10.1002/smtd.202300214" @default.
- W4382502367 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37382395" @default.
- W4382502367 hasPublicationYear "2023" @default.
- W4382502367 type Work @default.
- W4382502367 citedByCount "1" @default.
- W4382502367 crossrefType "journal-article" @default.
- W4382502367 hasAuthorship W4382502367A5015089971 @default.
- W4382502367 hasAuthorship W4382502367A5034668283 @default.
- W4382502367 hasAuthorship W4382502367A5043474616 @default.
- W4382502367 hasAuthorship W4382502367A5056511373 @default.
- W4382502367 hasAuthorship W4382502367A5081577635 @default.
- W4382502367 hasAuthorship W4382502367A5081675173 @default.
- W4382502367 hasBestOaLocation W43825023671 @default.
- W4382502367 hasConcept C120665830 @default.
- W4382502367 hasConcept C121332964 @default.
- W4382502367 hasConcept C135628077 @default.
- W4382502367 hasConcept C142724271 @default.
- W4382502367 hasConcept C147080431 @default.
- W4382502367 hasConcept C164866538 @default.
- W4382502367 hasConcept C185592680 @default.
- W4382502367 hasConcept C186060115 @default.
- W4382502367 hasConcept C192562407 @default.
- W4382502367 hasConcept C199360897 @default.
- W4382502367 hasConcept C204787440 @default.
- W4382502367 hasConcept C26771246 @default.
- W4382502367 hasConcept C2776910235 @default.
- W4382502367 hasConcept C41008148 @default.
- W4382502367 hasConcept C71924100 @default.
- W4382502367 hasConcept C77017923 @default.
- W4382502367 hasConcept C86803240 @default.
- W4382502367 hasConcept C97355855 @default.
- W4382502367 hasConceptScore W4382502367C120665830 @default.
- W4382502367 hasConceptScore W4382502367C121332964 @default.
- W4382502367 hasConceptScore W4382502367C135628077 @default.
- W4382502367 hasConceptScore W4382502367C142724271 @default.
- W4382502367 hasConceptScore W4382502367C147080431 @default.
- W4382502367 hasConceptScore W4382502367C164866538 @default.
- W4382502367 hasConceptScore W4382502367C185592680 @default.
- W4382502367 hasConceptScore W4382502367C186060115 @default.
- W4382502367 hasConceptScore W4382502367C192562407 @default.
- W4382502367 hasConceptScore W4382502367C199360897 @default.
- W4382502367 hasConceptScore W4382502367C204787440 @default.
- W4382502367 hasConceptScore W4382502367C26771246 @default.