Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382502569> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4382502569 endingPage "588" @default.
- W4382502569 startingPage "582" @default.
- W4382502569 abstract "Magnetic resonance imaging (MRI) is an important medical imaging method, whose major limitation is its long scan time due to the imaging mechanism, increasing patients' cost and waiting time for the examination. Currently, parallel imaging (PI) and compress sensing (CS) together with other reconstruction technologies have been proposed to accelerate image acquisition. However, the image quality of PI and CS depends on the image reconstruction algorithms, which is far from satisfying in respect to both the image quality and the reconstruction speed. In recent years, image reconstruction based on generative adversarial network (GAN) has become a research hotspot in the field of magnetic resonance imaging because of its excellent performance. In this review, we summarized the recent development of application of GAN in MRI reconstruction in both single- and multi-modality acceleration, hoping to provide a useful reference for interested researchers. In addition, we analyzed the characteristics and limitations of existing technologies and forecasted some development trends in this field.磁共振成像(MRI)是一种重要的医学成像技术,但其成像机制导致其扫描时间较长,增加了患者的检查成本与等待时间。目前已有一些技术手段,如并行成像(PI)、压缩感知(CS)等重建技术加快了其成像速度,但重建图像的质量受算法的影响。传统的重建算法在图像质量与重建速度等方面都有提高的空间。近年来,基于生成对抗网络(GAN)的方法在磁共振图像重建中展现出了优良性能,成为磁共振图像重建领域的研究热点。本文对近几年生成对抗网络在磁共振图像重建领域中的应用研究进行了全面梳理归纳,从单一模态加速重建和多模态协同加速重建两个方面综述了目前生成对抗网络在磁共振成像图像重建中的应用,以期为相关研究者提供有益参考。此外,本文还进一步分析了现有技术的特点与局限,并对未来发展趋势进行了展望。." @default.
- W4382502569 created "2023-06-30" @default.
- W4382502569 creator A5027361916 @default.
- W4382502569 creator A5047565099 @default.
- W4382502569 creator A5059618632 @default.
- W4382502569 creator A5091576463 @default.
- W4382502569 date "2023-06-25" @default.
- W4382502569 modified "2023-10-04" @default.
- W4382502569 title "[Application of generative adversarial network in magnetic resonance image reconstruction]." @default.
- W4382502569 cites W2778924750 @default.
- W4382502569 cites W2800433434 @default.
- W4382502569 cites W2890139949 @default.
- W4382502569 cites W2998376473 @default.
- W4382502569 cites W3034514764 @default.
- W4382502569 cites W3047625747 @default.
- W4382502569 cites W3088080397 @default.
- W4382502569 cites W3101674918 @default.
- W4382502569 cites W3108244925 @default.
- W4382502569 cites W3116305116 @default.
- W4382502569 cites W3119085955 @default.
- W4382502569 cites W3119836047 @default.
- W4382502569 cites W3162760914 @default.
- W4382502569 cites W3162769666 @default.
- W4382502569 cites W3164944602 @default.
- W4382502569 cites W4200631312 @default.
- W4382502569 cites W4206734100 @default.
- W4382502569 doi "https://doi.org/10.7507/1001-5515.202204007" @default.
- W4382502569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37380400" @default.
- W4382502569 hasPublicationYear "2023" @default.
- W4382502569 type Work @default.
- W4382502569 citedByCount "1" @default.
- W4382502569 crossrefType "journal-article" @default.
- W4382502569 hasAuthorship W4382502569A5027361916 @default.
- W4382502569 hasAuthorship W4382502569A5047565099 @default.
- W4382502569 hasAuthorship W4382502569A5059618632 @default.
- W4382502569 hasAuthorship W4382502569A5091576463 @default.
- W4382502569 hasConcept C115961682 @default.
- W4382502569 hasConcept C126838900 @default.
- W4382502569 hasConcept C141379421 @default.
- W4382502569 hasConcept C143409427 @default.
- W4382502569 hasConcept C154945302 @default.
- W4382502569 hasConcept C2780226545 @default.
- W4382502569 hasConcept C2988773926 @default.
- W4382502569 hasConcept C31972630 @default.
- W4382502569 hasConcept C37736160 @default.
- W4382502569 hasConcept C39890363 @default.
- W4382502569 hasConcept C41008148 @default.
- W4382502569 hasConcept C55020928 @default.
- W4382502569 hasConcept C71924100 @default.
- W4382502569 hasConceptScore W4382502569C115961682 @default.
- W4382502569 hasConceptScore W4382502569C126838900 @default.
- W4382502569 hasConceptScore W4382502569C141379421 @default.
- W4382502569 hasConceptScore W4382502569C143409427 @default.
- W4382502569 hasConceptScore W4382502569C154945302 @default.
- W4382502569 hasConceptScore W4382502569C2780226545 @default.
- W4382502569 hasConceptScore W4382502569C2988773926 @default.
- W4382502569 hasConceptScore W4382502569C31972630 @default.
- W4382502569 hasConceptScore W4382502569C37736160 @default.
- W4382502569 hasConceptScore W4382502569C39890363 @default.
- W4382502569 hasConceptScore W4382502569C41008148 @default.
- W4382502569 hasConceptScore W4382502569C55020928 @default.
- W4382502569 hasConceptScore W4382502569C71924100 @default.
- W4382502569 hasIssue "3" @default.
- W4382502569 hasLocation W43825025691 @default.
- W4382502569 hasOpenAccess W4382502569 @default.
- W4382502569 hasPrimaryLocation W43825025691 @default.
- W4382502569 hasRelatedWork W2901368259 @default.
- W4382502569 hasRelatedWork W3017161950 @default.
- W4382502569 hasRelatedWork W3024419957 @default.
- W4382502569 hasRelatedWork W3037184111 @default.
- W4382502569 hasRelatedWork W3156291593 @default.
- W4382502569 hasRelatedWork W3178813832 @default.
- W4382502569 hasRelatedWork W3198184493 @default.
- W4382502569 hasRelatedWork W4206598283 @default.
- W4382502569 hasRelatedWork W4312525628 @default.
- W4382502569 hasRelatedWork W4367663675 @default.
- W4382502569 hasVolume "40" @default.
- W4382502569 isParatext "false" @default.
- W4382502569 isRetracted "false" @default.
- W4382502569 workType "article" @default.