Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382519493> ?p ?o ?g. }
- W4382519493 endingPage "384" @default.
- W4382519493 startingPage "366" @default.
- W4382519493 abstract "With the development of computational science, many fields, including computational linguistics (sequence processing) and computational vision (image processing), have enabled various applications and automation with satisfactory results. However, the development of Computational Music Analysis (CMA) is still in its infancy. The main factor hindering the development of CMA is the complex form found in music pieces, which can be studied and analyzed in many different ways. Considering the advantages of Deep Learning (DL), this paper envisions a methodology for using DL to promote the development of Music Form Analysis (MFA). First, we review some common music forms and emphasize the significance and complexity of music forms. Next, we overview the CMA in two different processing ways, i.e., sequence-based processing and image-based processing. We then revisit the aims of CMA and propose the analysis principles that need to be satisfied for achieving the new aims during music analysis, including MFA. Subsequently, we use the fugue form as an example to verify the feasibility and potential of our envisioned methodology. The results validate the potential of using DL to obtain better MFA results. Finally, the problems and challenges of applying DL in MFA are identified and concluded into two categories, namely, the music and the non-music category, for future studies." @default.
- W4382519493 created "2023-06-30" @default.
- W4382519493 creator A5023680401 @default.
- W4382519493 creator A5056087010 @default.
- W4382519493 creator A5065353209 @default.
- W4382519493 creator A5069916756 @default.
- W4382519493 creator A5090292649 @default.
- W4382519493 date "2023-01-01" @default.
- W4382519493 modified "2023-09-27" @default.
- W4382519493 title "Computational Music: Analysis of Music Forms" @default.
- W4382519493 cites W1940312882 @default.
- W4382519493 cites W1978508825 @default.
- W4382519493 cites W1985040165 @default.
- W4382519493 cites W1993667686 @default.
- W4382519493 cites W2003255646 @default.
- W4382519493 cites W2016416572 @default.
- W4382519493 cites W2022028553 @default.
- W4382519493 cites W2029122212 @default.
- W4382519493 cites W2047699936 @default.
- W4382519493 cites W2125769793 @default.
- W4382519493 cites W2131149854 @default.
- W4382519493 cites W2139789441 @default.
- W4382519493 cites W2140991337 @default.
- W4382519493 cites W2180877453 @default.
- W4382519493 cites W2195591900 @default.
- W4382519493 cites W2281030185 @default.
- W4382519493 cites W2460900141 @default.
- W4382519493 cites W2514575676 @default.
- W4382519493 cites W2566709934 @default.
- W4382519493 cites W2574324374 @default.
- W4382519493 cites W2757114578 @default.
- W4382519493 cites W2770871520 @default.
- W4382519493 cites W2891780888 @default.
- W4382519493 cites W2901312569 @default.
- W4382519493 cites W2905266130 @default.
- W4382519493 cites W2919115771 @default.
- W4382519493 cites W2936217452 @default.
- W4382519493 cites W2963165299 @default.
- W4382519493 cites W2978099719 @default.
- W4382519493 cites W2980784938 @default.
- W4382519493 cites W2983954563 @default.
- W4382519493 cites W2991471437 @default.
- W4382519493 cites W3003711898 @default.
- W4382519493 cites W3009893016 @default.
- W4382519493 cites W3027314942 @default.
- W4382519493 cites W3030056709 @default.
- W4382519493 cites W3034498211 @default.
- W4382519493 cites W3036000438 @default.
- W4382519493 cites W3081987387 @default.
- W4382519493 cites W3097083842 @default.
- W4382519493 cites W3126934640 @default.
- W4382519493 cites W3136270197 @default.
- W4382519493 cites W3200308049 @default.
- W4382519493 cites W3215600992 @default.
- W4382519493 cites W326471431 @default.
- W4382519493 cites W4205831973 @default.
- W4382519493 cites W4230612607 @default.
- W4382519493 cites W4239127499 @default.
- W4382519493 cites W4246233237 @default.
- W4382519493 cites W4256360274 @default.
- W4382519493 cites W4281719493 @default.
- W4382519493 cites W4288538225 @default.
- W4382519493 cites W4298188388 @default.
- W4382519493 cites W632616192 @default.
- W4382519493 doi "https://doi.org/10.1007/978-3-031-36805-9_25" @default.
- W4382519493 hasPublicationYear "2023" @default.
- W4382519493 type Work @default.
- W4382519493 citedByCount "0" @default.
- W4382519493 crossrefType "book-chapter" @default.
- W4382519493 hasAuthorship W4382519493A5023680401 @default.
- W4382519493 hasAuthorship W4382519493A5056087010 @default.
- W4382519493 hasAuthorship W4382519493A5065353209 @default.
- W4382519493 hasAuthorship W4382519493A5069916756 @default.
- W4382519493 hasAuthorship W4382519493A5090292649 @default.
- W4382519493 hasConcept C11413529 @default.
- W4382519493 hasConcept C115961682 @default.
- W4382519493 hasConcept C142362112 @default.
- W4382519493 hasConcept C143857728 @default.
- W4382519493 hasConcept C153349607 @default.
- W4382519493 hasConcept C154945302 @default.
- W4382519493 hasConcept C179799912 @default.
- W4382519493 hasConcept C2778112365 @default.
- W4382519493 hasConcept C41008148 @default.
- W4382519493 hasConcept C54355233 @default.
- W4382519493 hasConcept C558565934 @default.
- W4382519493 hasConcept C86803240 @default.
- W4382519493 hasConcept C9417928 @default.
- W4382519493 hasConceptScore W4382519493C11413529 @default.
- W4382519493 hasConceptScore W4382519493C115961682 @default.
- W4382519493 hasConceptScore W4382519493C142362112 @default.
- W4382519493 hasConceptScore W4382519493C143857728 @default.
- W4382519493 hasConceptScore W4382519493C153349607 @default.
- W4382519493 hasConceptScore W4382519493C154945302 @default.
- W4382519493 hasConceptScore W4382519493C179799912 @default.
- W4382519493 hasConceptScore W4382519493C2778112365 @default.
- W4382519493 hasConceptScore W4382519493C41008148 @default.
- W4382519493 hasConceptScore W4382519493C54355233 @default.
- W4382519493 hasConceptScore W4382519493C558565934 @default.