Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382536596> ?p ?o ?g. }
- W4382536596 abstract "The accuracy of radar emitter signal sorting nowadays deteriorates due to the high flexibility and complexity of modern radar pulse streams and the density of crowded electromagnetic environment. In modern radar signal sorting based on pulse repetition interval, conventional methods usually fail to achieve acceptable accuracy and lack stable performance for two main reasons: (1) Conventional methods require a large number of pulses in the stream, which is not practical in many applications. (2) These methods are sensitive to pulse loss and random noise pulses. These two reasons are the main problem that is addressed in this paper. Our proposed model is a machine learning architecture called Unified Residual Recurrent Neural Network (URRNN). In this architecture, residual neural network and recurrent neural network are combined and modified to alleviate the forementioned shortcomings of traditional approaches and enhance the model performance in both classification and deinterleaving tasks. This aim is achieved due to the fact that URRNN extracts both spatial and temporal features, which means more information about processed stream that is exploited to enhance model performance. Three different architectural combinations of URRNN, which show high accuracy and reasonable processing time, are built and trained. The structural and functional description are provided for each architecture. Simulation demonstrates high accuracy and reliable performance of the proposed methods in different circumstances. The results are compared with the results obtained by other conventional machine learning techniques." @default.
- W4382536596 created "2023-06-30" @default.
- W4382536596 creator A5006945618 @default.
- W4382536596 creator A5023699897 @default.
- W4382536596 creator A5025779193 @default.
- W4382536596 creator A5049472618 @default.
- W4382536596 creator A5065698426 @default.
- W4382536596 date "2023-05-11" @default.
- W4382536596 modified "2023-10-18" @default.
- W4382536596 title "An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network" @default.
- W4382536596 cites W1498436455 @default.
- W4382536596 cites W1987763124 @default.
- W4382536596 cites W2015815072 @default.
- W4382536596 cites W2108884300 @default.
- W4382536596 cites W2113592174 @default.
- W4382536596 cites W2134465439 @default.
- W4382536596 cites W2142463470 @default.
- W4382536596 cites W2156393689 @default.
- W4382536596 cites W2165835468 @default.
- W4382536596 cites W2194775991 @default.
- W4382536596 cites W2586095846 @default.
- W4382536596 cites W2588862697 @default.
- W4382536596 cites W2649995573 @default.
- W4382536596 cites W2725888570 @default.
- W4382536596 cites W2883191931 @default.
- W4382536596 cites W2895211628 @default.
- W4382536596 cites W2904891457 @default.
- W4382536596 cites W2910695182 @default.
- W4382536596 cites W2916204331 @default.
- W4382536596 cites W2953485683 @default.
- W4382536596 cites W2964199361 @default.
- W4382536596 cites W2968240714 @default.
- W4382536596 cites W2990973691 @default.
- W4382536596 cites W3003529661 @default.
- W4382536596 cites W3023695338 @default.
- W4382536596 cites W3026464726 @default.
- W4382536596 cites W3028835234 @default.
- W4382536596 cites W3037226137 @default.
- W4382536596 cites W3080284338 @default.
- W4382536596 cites W3082540355 @default.
- W4382536596 cites W3110666852 @default.
- W4382536596 cites W3111706701 @default.
- W4382536596 cites W3112358329 @default.
- W4382536596 cites W3121601851 @default.
- W4382536596 cites W3132272810 @default.
- W4382536596 cites W3161934990 @default.
- W4382536596 cites W3164071761 @default.
- W4382536596 cites W3174003812 @default.
- W4382536596 cites W3175403797 @default.
- W4382536596 cites W3209337022 @default.
- W4382536596 cites W3216409427 @default.
- W4382536596 cites W4206528934 @default.
- W4382536596 cites W4206779865 @default.
- W4382536596 cites W4220983482 @default.
- W4382536596 cites W4226324858 @default.
- W4382536596 cites W4312493806 @default.
- W4382536596 cites W654636658 @default.
- W4382536596 doi "https://doi.org/10.1049/rsn2.12417" @default.
- W4382536596 hasPublicationYear "2023" @default.
- W4382536596 type Work @default.
- W4382536596 citedByCount "0" @default.
- W4382536596 crossrefType "journal-article" @default.
- W4382536596 hasAuthorship W4382536596A5006945618 @default.
- W4382536596 hasAuthorship W4382536596A5023699897 @default.
- W4382536596 hasAuthorship W4382536596A5025779193 @default.
- W4382536596 hasAuthorship W4382536596A5049472618 @default.
- W4382536596 hasAuthorship W4382536596A5065698426 @default.
- W4382536596 hasBestOaLocation W43825365961 @default.
- W4382536596 hasConcept C111696304 @default.
- W4382536596 hasConcept C11413529 @default.
- W4382536596 hasConcept C115961682 @default.
- W4382536596 hasConcept C119857082 @default.
- W4382536596 hasConcept C153180895 @default.
- W4382536596 hasConcept C154945302 @default.
- W4382536596 hasConcept C155512373 @default.
- W4382536596 hasConcept C182862853 @default.
- W4382536596 hasConcept C199360897 @default.
- W4382536596 hasConcept C2779843651 @default.
- W4382536596 hasConcept C41008148 @default.
- W4382536596 hasConcept C50644808 @default.
- W4382536596 hasConcept C554190296 @default.
- W4382536596 hasConcept C76155785 @default.
- W4382536596 hasConcept C99498987 @default.
- W4382536596 hasConceptScore W4382536596C111696304 @default.
- W4382536596 hasConceptScore W4382536596C11413529 @default.
- W4382536596 hasConceptScore W4382536596C115961682 @default.
- W4382536596 hasConceptScore W4382536596C119857082 @default.
- W4382536596 hasConceptScore W4382536596C153180895 @default.
- W4382536596 hasConceptScore W4382536596C154945302 @default.
- W4382536596 hasConceptScore W4382536596C155512373 @default.
- W4382536596 hasConceptScore W4382536596C182862853 @default.
- W4382536596 hasConceptScore W4382536596C199360897 @default.
- W4382536596 hasConceptScore W4382536596C2779843651 @default.
- W4382536596 hasConceptScore W4382536596C41008148 @default.
- W4382536596 hasConceptScore W4382536596C50644808 @default.
- W4382536596 hasConceptScore W4382536596C554190296 @default.
- W4382536596 hasConceptScore W4382536596C76155785 @default.
- W4382536596 hasConceptScore W4382536596C99498987 @default.
- W4382536596 hasLocation W43825365961 @default.
- W4382536596 hasOpenAccess W4382536596 @default.