Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382541505> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4382541505 abstract "Abstract High-dimensional data is a major challenge for a high-quality machine learning model. Feature extraction is the most common technique offered in the literature to reduce the amount of data. Moreover, relevant feature extraction leads to a more efficient and reliable classification system through machine learning (ML). In this study, the authors introduce Singular Value Principal Component Linear Discriminant Analysis (SVPC-LDA), a hybrid dimensionality reduction technique that combines the three most popular feature extraction methods: Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD), and Principal Component Analysis (PCA). The proposed technique was evaluated using Gaussian NB (Naïve Bayes), K Neighbors, Gaussian Process, Linear SVC (Support Vector Classifier), SGD (Stochastic Gradient Descent), and Passive Aggressive Classifiers on the standard chronic kidney disease dataset. In addition, the efficiency of SVPC-LDA was compared with all features and with existing PCA, SVD, ICA, and LDA methods. In addition, the effectiveness of the hybridized SVPC-LDA technique was measured on a high scale, with achieved values of 98.75% accuracy, 98.07% sensitivity, 96.55% precision, 100% specificity, and 99.03% AUC. In addition, dimensionality was reduced by 15% and RMSE by 40.60%, which is better than the techniques found in the literature." @default.
- W4382541505 created "2023-06-30" @default.
- W4382541505 creator A5000681220 @default.
- W4382541505 creator A5014199830 @default.
- W4382541505 creator A5016311020 @default.
- W4382541505 creator A5022692347 @default.
- W4382541505 creator A5023614722 @default.
- W4382541505 creator A5035580856 @default.
- W4382541505 creator A5059877458 @default.
- W4382541505 creator A5060832078 @default.
- W4382541505 date "2023-06-29" @default.
- W4382541505 modified "2023-09-25" @default.
- W4382541505 title "SVPC-LDA: A Hybridised Feature Extraction Approach for Chronic Kidney Disease Dataset" @default.
- W4382541505 cites W1535077195 @default.
- W4382541505 cites W1814200838 @default.
- W4382541505 cites W2077871208 @default.
- W4382541505 cites W2601157893 @default.
- W4382541505 cites W2607036003 @default.
- W4382541505 cites W2777105798 @default.
- W4382541505 cites W2785597854 @default.
- W4382541505 cites W2790563929 @default.
- W4382541505 cites W2803773316 @default.
- W4382541505 cites W2910027896 @default.
- W4382541505 cites W2913228117 @default.
- W4382541505 cites W2945020349 @default.
- W4382541505 cites W2981372033 @default.
- W4382541505 cites W2988647409 @default.
- W4382541505 cites W2998483550 @default.
- W4382541505 cites W3004678548 @default.
- W4382541505 cites W3007031763 @default.
- W4382541505 cites W3011082552 @default.
- W4382541505 cites W3042127975 @default.
- W4382541505 cites W3097674592 @default.
- W4382541505 cites W3125584267 @default.
- W4382541505 cites W3126446115 @default.
- W4382541505 cites W3131860561 @default.
- W4382541505 cites W3158729099 @default.
- W4382541505 cites W3173093567 @default.
- W4382541505 cites W3197995211 @default.
- W4382541505 cites W3206166550 @default.
- W4382541505 cites W3211428289 @default.
- W4382541505 cites W4212821816 @default.
- W4382541505 cites W4226153255 @default.
- W4382541505 cites W4229508150 @default.
- W4382541505 cites W4243146291 @default.
- W4382541505 doi "https://doi.org/10.21203/rs.3.rs-3075598/v1" @default.
- W4382541505 hasPublicationYear "2023" @default.
- W4382541505 type Work @default.
- W4382541505 citedByCount "0" @default.
- W4382541505 crossrefType "posted-content" @default.
- W4382541505 hasAuthorship W4382541505A5000681220 @default.
- W4382541505 hasAuthorship W4382541505A5014199830 @default.
- W4382541505 hasAuthorship W4382541505A5016311020 @default.
- W4382541505 hasAuthorship W4382541505A5022692347 @default.
- W4382541505 hasAuthorship W4382541505A5023614722 @default.
- W4382541505 hasAuthorship W4382541505A5035580856 @default.
- W4382541505 hasAuthorship W4382541505A5059877458 @default.
- W4382541505 hasAuthorship W4382541505A5060832078 @default.
- W4382541505 hasBestOaLocation W43825415051 @default.
- W4382541505 hasConcept C111030470 @default.
- W4382541505 hasConcept C12267149 @default.
- W4382541505 hasConcept C153180895 @default.
- W4382541505 hasConcept C154945302 @default.
- W4382541505 hasConcept C22789450 @default.
- W4382541505 hasConcept C27438332 @default.
- W4382541505 hasConcept C33923547 @default.
- W4382541505 hasConcept C41008148 @default.
- W4382541505 hasConcept C52001869 @default.
- W4382541505 hasConcept C52622490 @default.
- W4382541505 hasConcept C69738355 @default.
- W4382541505 hasConcept C70518039 @default.
- W4382541505 hasConceptScore W4382541505C111030470 @default.
- W4382541505 hasConceptScore W4382541505C12267149 @default.
- W4382541505 hasConceptScore W4382541505C153180895 @default.
- W4382541505 hasConceptScore W4382541505C154945302 @default.
- W4382541505 hasConceptScore W4382541505C22789450 @default.
- W4382541505 hasConceptScore W4382541505C27438332 @default.
- W4382541505 hasConceptScore W4382541505C33923547 @default.
- W4382541505 hasConceptScore W4382541505C41008148 @default.
- W4382541505 hasConceptScore W4382541505C52001869 @default.
- W4382541505 hasConceptScore W4382541505C52622490 @default.
- W4382541505 hasConceptScore W4382541505C69738355 @default.
- W4382541505 hasConceptScore W4382541505C70518039 @default.
- W4382541505 hasLocation W43825415051 @default.
- W4382541505 hasOpenAccess W4382541505 @default.
- W4382541505 hasPrimaryLocation W43825415051 @default.
- W4382541505 hasRelatedWork W1756315871 @default.
- W4382541505 hasRelatedWork W2070644722 @default.
- W4382541505 hasRelatedWork W2096257420 @default.
- W4382541505 hasRelatedWork W2105055468 @default.
- W4382541505 hasRelatedWork W2151015462 @default.
- W4382541505 hasRelatedWork W2169311637 @default.
- W4382541505 hasRelatedWork W2347971555 @default.
- W4382541505 hasRelatedWork W2373052636 @default.
- W4382541505 hasRelatedWork W2538551403 @default.
- W4382541505 hasRelatedWork W4384695349 @default.
- W4382541505 isParatext "false" @default.
- W4382541505 isRetracted "false" @default.
- W4382541505 workType "article" @default.