Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382542282> ?p ?o ?g. }
- W4382542282 abstract "We analyze the influence of microramp vortex generators (mVGs) on a canonical oblique shock wave/turbulent boundary-layer interaction (SBLI) in terms of mean flow field and unsteady dynamics. The flow configuration of our wall-resolved large-eddy simulations (LES) reproduces the experiment of Bo et al. [“Experimental investigation of the micro-ramp based shock wave and turbulent boundary-layer interaction control,” Phys. Fluids 24, 055110 (2012)]: a rake of microramps is inserted upstream of the SBLI, protruding by 0.476δ in a turbulent boundary layer (TBL) at free-stream Mach number M = 2.7 and corresponding to a Reynolds number based on the displacement thickness of Reθ=3600. The long integration time of 1672 Lsep/U∞ allows an accurate characterization of the low-frequency dynamics of the SBLI under the influence of the microramps. With respect to the reference SBLI without control devices, the mean flow field shows a new spatial organization of the recirculation bubble due to the mVGs' wake. The alternating high and low-speed zones in the near-wall region of the incoming TBL, induced by the counter-rotating streamwise vortices generated by the mVGs, trigger spanwise corrugations of the separation and reattachment lines and locally alter the reverse flow region. Tornado-like vortices are found in the vicinity of these zones, yielding a new fluid collection mechanism of the reverse flow region. These vortices redirect the fluid coming from regions outside of the wake in the incoming TBL to three key spanwise exit locations located in between the mVGs and at their centerline. Interestingly, power spectral densities of wall-pressure probes show a damping of the low-frequency dynamics of the reflected shock foot for spanwise stations aligned with the mVGs' wake, whereas this activity appears to be reinforced in the planes located in between the mVGs. However, we found no evidence of unsteady forcing linked to the high-frequency shedding of the coherent structures developing in the wake of the microramps. Dynamic mode decomposition highlights a significant change in the low-frequency dynamics, mostly affecting the mass budget of the recirculation bubble. The breathing of the recirculation zone that occurs at StL=0.1 for the SBLI without control devices (with StL=fLsep/U∞) appears to shift toward a lower frequency of StL=0.05. Remembering that the reflected shock foot motion is related to frequencies in the range StL=[0.03−0.05], the SBLI with upstream mVGs seems to highlight a synchronization of this motion with the breathing of the separation bubble." @default.
- W4382542282 created "2023-06-30" @default.
- W4382542282 creator A5016562054 @default.
- W4382542282 creator A5030504756 @default.
- W4382542282 creator A5060000405 @default.
- W4382542282 creator A5063728266 @default.
- W4382542282 date "2023-06-01" @default.
- W4382542282 modified "2023-10-16" @default.
- W4382542282 title "Microramp wake impinging on canonical shock/boundary-layer interaction" @default.
- W4382542282 cites W1886151011 @default.
- W4382542282 cites W1971397751 @default.
- W4382542282 cites W1997544368 @default.
- W4382542282 cites W2000984895 @default.
- W4382542282 cites W2002647381 @default.
- W4382542282 cites W2007077277 @default.
- W4382542282 cites W2011149490 @default.
- W4382542282 cites W2014356541 @default.
- W4382542282 cites W2030670821 @default.
- W4382542282 cites W2032569932 @default.
- W4382542282 cites W2038899941 @default.
- W4382542282 cites W2039864342 @default.
- W4382542282 cites W2039999768 @default.
- W4382542282 cites W2040571824 @default.
- W4382542282 cites W2051030499 @default.
- W4382542282 cites W2053828742 @default.
- W4382542282 cites W2054362206 @default.
- W4382542282 cites W2061791680 @default.
- W4382542282 cites W2068751360 @default.
- W4382542282 cites W2075787206 @default.
- W4382542282 cites W2080914886 @default.
- W4382542282 cites W2083115251 @default.
- W4382542282 cites W2086631035 @default.
- W4382542282 cites W2086720063 @default.
- W4382542282 cites W2087668920 @default.
- W4382542282 cites W2104119132 @default.
- W4382542282 cites W2108870758 @default.
- W4382542282 cites W2118982895 @default.
- W4382542282 cites W2127879190 @default.
- W4382542282 cites W2131653803 @default.
- W4382542282 cites W2141334373 @default.
- W4382542282 cites W2142975363 @default.
- W4382542282 cites W2147041309 @default.
- W4382542282 cites W2148302906 @default.
- W4382542282 cites W2155155203 @default.
- W4382542282 cites W2167291508 @default.
- W4382542282 cites W2302421679 @default.
- W4382542282 cites W2302809909 @default.
- W4382542282 cites W2316795697 @default.
- W4382542282 cites W2336413838 @default.
- W4382542282 cites W2460100368 @default.
- W4382542282 cites W2532817592 @default.
- W4382542282 cites W2575541651 @default.
- W4382542282 cites W2648653857 @default.
- W4382542282 cites W2735449164 @default.
- W4382542282 cites W2791246103 @default.
- W4382542282 cites W2794968714 @default.
- W4382542282 cites W2800553144 @default.
- W4382542282 cites W2808603422 @default.
- W4382542282 cites W2964143714 @default.
- W4382542282 cites W3099803807 @default.
- W4382542282 cites W3100293722 @default.
- W4382542282 cites W3123143347 @default.
- W4382542282 cites W3173194792 @default.
- W4382542282 cites W4234471895 @default.
- W4382542282 cites W4307138322 @default.
- W4382542282 cites W4313829115 @default.
- W4382542282 cites W4376849594 @default.
- W4382542282 cites W3145537184 @default.
- W4382542282 doi "https://doi.org/10.1063/5.0156580" @default.
- W4382542282 hasPublicationYear "2023" @default.
- W4382542282 type Work @default.
- W4382542282 citedByCount "2" @default.
- W4382542282 countsByYear W43825422822023 @default.
- W4382542282 crossrefType "journal-article" @default.
- W4382542282 hasAuthorship W4382542282A5016562054 @default.
- W4382542282 hasAuthorship W4382542282A5030504756 @default.
- W4382542282 hasAuthorship W4382542282A5060000405 @default.
- W4382542282 hasAuthorship W4382542282A5063728266 @default.
- W4382542282 hasBestOaLocation W43825422821 @default.
- W4382542282 hasConcept C111603439 @default.
- W4382542282 hasConcept C121332964 @default.
- W4382542282 hasConcept C126322002 @default.
- W4382542282 hasConcept C132373408 @default.
- W4382542282 hasConcept C140820882 @default.
- W4382542282 hasConcept C165231844 @default.
- W4382542282 hasConcept C182748727 @default.
- W4382542282 hasConcept C196558001 @default.
- W4382542282 hasConcept C2781300812 @default.
- W4382542282 hasConcept C48939323 @default.
- W4382542282 hasConcept C57879066 @default.
- W4382542282 hasConcept C70477161 @default.
- W4382542282 hasConcept C71924100 @default.
- W4382542282 hasConcept C74650414 @default.
- W4382542282 hasConcept C77576233 @default.
- W4382542282 hasConceptScore W4382542282C111603439 @default.
- W4382542282 hasConceptScore W4382542282C121332964 @default.
- W4382542282 hasConceptScore W4382542282C126322002 @default.
- W4382542282 hasConceptScore W4382542282C132373408 @default.
- W4382542282 hasConceptScore W4382542282C140820882 @default.
- W4382542282 hasConceptScore W4382542282C165231844 @default.