Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382561737> ?p ?o ?g. }
- W4382561737 endingPage "103677" @default.
- W4382561737 startingPage "103677" @default.
- W4382561737 abstract "Current diagnostic methods for assessment of hepatitis C virus related hepatocellular carcinoma and subsequent categorization of hepatocellular carcinoma into non-angio-invasive hepatocellular carcinoma and angio-invasive hepatocellular carcinoma, to establish appropriate treatment strategies, are costly, invasive and requires multiple screening steps. This demands alternative diagnostic approaches that are cost-effective, time-efficient, and minimally invasive, while maintaining their efficacy for screening of hepatitis c virus related hepatocellular carcinoma. In this study, we propose that attenuated total reflection Fourier transform infrared in conjunction with principal component analysis – linear discriminant analysis and support vector machine multivariate algorithms holds a potential as a sensitive tool for the detection of hepatitis C virus-related hepatocellular carcinoma and the subsequent categorization of hepatocellular carcinoma into non-angio-invasive hepatocellular carcinoma and angio-invasive hepatocellular carcinoma. Freeze-dried sera samples collected from 31 hepatitis c virus related hepatocellular carcinoma patients and 30 healthy individuals, were used to acquire mid-infrared absorbance spectra (3500–900 cm-1) using attenuated total reflection Fourier transform infrared. Chemometric machine learning techniques were utilized to build principal component analysis – linear discriminant analysis and support vector machine discriminant models for the spectral data of hepatocellular carcinoma patients and healthy individuals. Sensitivity, specificity, and external validation on blind samples were calculated. Major variations were observed in the two spectral regions i.e., 3500–2800 and 1800–900 cm-1. IR spectral signatures of hepatocellular carcinoma were reliably different from healthy individuals. Principal component analysis – linear discriminant analysis and support vector machine models computed 100% accuracy for diagnosing hepatocellular carcinoma. To classify the non-angio-invasive hepatocellular carcinoma/ angio-invasive hepatocellular carcinoma status, diagnostic accuracy of 86.21% was achieved for principal component analysis – linear discriminant analysis. While the support vector machine showed a training accuracy of 98.28% and a cross-validation accuracy of 82.75%. External validation for support vector machine based classification observed 100% sensitivity and specificity for accurately classifying the freeze-dried sera samples for all categories. We present the specific spectral signatures for non-angio-invasive hepatocellular carcinoma and angio-invasive hepatocellular carcinoma, which were prominently differentiated from healthy individuals. This study provides an initial insight into the potential of attenuated total reflection Fourier transform infrared to diagnose hepatitis C virus related hepatocellular carcinoma but also to further categorize into non-angio-invasive and angio-invasive hepatocellular carcinoma." @default.
- W4382561737 created "2023-06-30" @default.
- W4382561737 creator A5008223646 @default.
- W4382561737 creator A5038930717 @default.
- W4382561737 creator A5054936288 @default.
- W4382561737 creator A5092359977 @default.
- W4382561737 date "2023-09-01" @default.
- W4382561737 modified "2023-09-30" @default.
- W4382561737 title "Diagnosis and monitoring of hepatocellular carcinoma in Hepatitis C virus patients using attenuated total reflection Fourier transform infrared spectroscopy" @default.
- W4382561737 cites W1544738982 @default.
- W4382561737 cites W1640867508 @default.
- W4382561737 cites W1966972964 @default.
- W4382561737 cites W1968567819 @default.
- W4382561737 cites W1980336365 @default.
- W4382561737 cites W1988280812 @default.
- W4382561737 cites W1990823460 @default.
- W4382561737 cites W2000431734 @default.
- W4382561737 cites W2009020027 @default.
- W4382561737 cites W2013675321 @default.
- W4382561737 cites W2026475386 @default.
- W4382561737 cites W2034783449 @default.
- W4382561737 cites W2037873815 @default.
- W4382561737 cites W2042628443 @default.
- W4382561737 cites W2043747716 @default.
- W4382561737 cites W2047028523 @default.
- W4382561737 cites W2049426430 @default.
- W4382561737 cites W2051345180 @default.
- W4382561737 cites W2056158724 @default.
- W4382561737 cites W2081184437 @default.
- W4382561737 cites W2087159485 @default.
- W4382561737 cites W2088724248 @default.
- W4382561737 cites W2093832288 @default.
- W4382561737 cites W2109446907 @default.
- W4382561737 cites W2109466536 @default.
- W4382561737 cites W2109468737 @default.
- W4382561737 cites W2110510461 @default.
- W4382561737 cites W2346761603 @default.
- W4382561737 cites W2465584395 @default.
- W4382561737 cites W2467713285 @default.
- W4382561737 cites W2594626196 @default.
- W4382561737 cites W2597777140 @default.
- W4382561737 cites W2781327898 @default.
- W4382561737 cites W2810652813 @default.
- W4382561737 cites W2888588041 @default.
- W4382561737 cites W2906975348 @default.
- W4382561737 cites W2909176479 @default.
- W4382561737 cites W2919004555 @default.
- W4382561737 cites W2964610743 @default.
- W4382561737 cites W2981208066 @default.
- W4382561737 cites W2997744465 @default.
- W4382561737 cites W3007828711 @default.
- W4382561737 cites W3011711048 @default.
- W4382561737 cites W3016846506 @default.
- W4382561737 cites W3020578014 @default.
- W4382561737 cites W3101212880 @default.
- W4382561737 cites W3122453867 @default.
- W4382561737 cites W3183864673 @default.
- W4382561737 cites W3201278359 @default.
- W4382561737 cites W4205549555 @default.
- W4382561737 cites W4210375186 @default.
- W4382561737 cites W4241772354 @default.
- W4382561737 cites W4283167373 @default.
- W4382561737 cites W4311181727 @default.
- W4382561737 cites W4320033918 @default.
- W4382561737 cites W4320494080 @default.
- W4382561737 cites W4365447954 @default.
- W4382561737 cites W4367301219 @default.
- W4382561737 cites W580142330 @default.
- W4382561737 doi "https://doi.org/10.1016/j.pdpdt.2023.103677" @default.
- W4382561737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37390855" @default.
- W4382561737 hasPublicationYear "2023" @default.
- W4382561737 type Work @default.
- W4382561737 citedByCount "0" @default.
- W4382561737 crossrefType "journal-article" @default.
- W4382561737 hasAuthorship W4382561737A5008223646 @default.
- W4382561737 hasAuthorship W4382561737A5038930717 @default.
- W4382561737 hasAuthorship W4382561737A5054936288 @default.
- W4382561737 hasAuthorship W4382561737A5092359977 @default.
- W4382561737 hasConcept C126322002 @default.
- W4382561737 hasConcept C154945302 @default.
- W4382561737 hasConcept C159047783 @default.
- W4382561737 hasConcept C2522874641 @default.
- W4382561737 hasConcept C27438332 @default.
- W4382561737 hasConcept C2776408679 @default.
- W4382561737 hasConcept C2777546739 @default.
- W4382561737 hasConcept C2778019345 @default.
- W4382561737 hasConcept C2780593183 @default.
- W4382561737 hasConcept C41008148 @default.
- W4382561737 hasConcept C69738355 @default.
- W4382561737 hasConcept C71924100 @default.
- W4382561737 hasConceptScore W4382561737C126322002 @default.
- W4382561737 hasConceptScore W4382561737C154945302 @default.
- W4382561737 hasConceptScore W4382561737C159047783 @default.
- W4382561737 hasConceptScore W4382561737C2522874641 @default.
- W4382561737 hasConceptScore W4382561737C27438332 @default.
- W4382561737 hasConceptScore W4382561737C2776408679 @default.
- W4382561737 hasConceptScore W4382561737C2777546739 @default.
- W4382561737 hasConceptScore W4382561737C2778019345 @default.