Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382561906> ?p ?o ?g. }
- W4382561906 endingPage "121069" @default.
- W4382561906 startingPage "121069" @default.
- W4382561906 abstract "Heating pressurised air to high temperatures with concentrated solar thermal energy is technically challenging mainly due to the heat transfer properties of the pressurised air and the intermittent nature of the solar energy. To address this challenge, a novel molten metal helical coil (M2HC) solar receiver for heating pressurised air or other gases is presented. This system comprises a cavity and a helical coil, both of which are submerged in a molten bath, e.g. a molten metal, which serves as a heat transfer fluid (HTF) between the submerged cavity and the helical coil. The absorbed concentrated solar thermal heat in the cavity is transferred to the molten bath via convection. Pressurised air is heated within the submerged helical coil, without any contact with the molten bath. The molten bath is agitated via the bubbles of an injected inert gas enabling a high rate of heat transfer between the submerged cavity and the helical coil. The purpose of this paper is to introduce the concept of the M2HC solar receiver and provide a preliminary evaluation to identify its potential benefits and challenges. In doing so, a one-dimensional model of the proposed M2HC solar receiver is developed, predicting the system performance considering gallium (Ga) and argon (Ar) as the HTF and dispersed inert gas into the molten Ga bath, respectively. The heat transfer model of the cavity, gallium bath, Ar bubbles and the helical coil is implemented with the consideration of convective and radiative losses in the cavity. The mixture of Ga and Ar bubbles is considered as one phase and modelled with a one-dimensional drift-flux correlations. A 1-D model has been also considered for the heating of the pressurised air within the coil. The reliability of the model was assessed through comparison with the available relevant experimental data in literature. The model is then employed to perform a sensitivity analysis to the variations in the temperature of the outlet air, length of helical coil and the ratio of the mass flow rates of the injected Ar into the molten bath and the inlet air. The predicted absorption and exergy efficiencies of the proposed M2HC solar receiver are ∼64% and 73%, respectively, at an output temperature of 900°C and 5% Ar to air mass flow ratio. It has been also found that the variation of Ar to air mass ratio from 0% to 25% decreases the fraction of the absorbed energy that goes to air from 100% to ∼ 90 %. Nonetheless, it increases the convective heat transfer between the molten bath, submerged cavity and the helical coil." @default.
- W4382561906 created "2023-06-30" @default.
- W4382561906 creator A5036535029 @default.
- W4382561906 creator A5037065480 @default.
- W4382561906 creator A5058564296 @default.
- W4382561906 creator A5062178633 @default.
- W4382561906 creator A5076378947 @default.
- W4382561906 date "2023-09-01" @default.
- W4382561906 modified "2023-09-27" @default.
- W4382561906 title "A preliminary evaluation of a molten metal helical coil solar receiver for heating pressurised air" @default.
- W4382561906 cites W1696938423 @default.
- W4382561906 cites W1982531949 @default.
- W4382561906 cites W1984357745 @default.
- W4382561906 cites W1987500428 @default.
- W4382561906 cites W1998090176 @default.
- W4382561906 cites W1999848544 @default.
- W4382561906 cites W2003477035 @default.
- W4382561906 cites W2004692679 @default.
- W4382561906 cites W2009742260 @default.
- W4382561906 cites W2015913900 @default.
- W4382561906 cites W2019758240 @default.
- W4382561906 cites W2027278090 @default.
- W4382561906 cites W2029256683 @default.
- W4382561906 cites W2044272124 @default.
- W4382561906 cites W2070978350 @default.
- W4382561906 cites W2091576220 @default.
- W4382561906 cites W2094506810 @default.
- W4382561906 cites W2135536698 @default.
- W4382561906 cites W2346508417 @default.
- W4382561906 cites W2469247195 @default.
- W4382561906 cites W2509146683 @default.
- W4382561906 cites W2523517583 @default.
- W4382561906 cites W2548981139 @default.
- W4382561906 cites W2589079979 @default.
- W4382561906 cites W2614435106 @default.
- W4382561906 cites W2620287883 @default.
- W4382561906 cites W2762253936 @default.
- W4382561906 cites W2763241250 @default.
- W4382561906 cites W2789714220 @default.
- W4382561906 cites W2790816684 @default.
- W4382561906 cites W2793523628 @default.
- W4382561906 cites W2801931988 @default.
- W4382561906 cites W2916579267 @default.
- W4382561906 cites W2919876714 @default.
- W4382561906 cites W2920612063 @default.
- W4382561906 cites W2921012753 @default.
- W4382561906 cites W2922868925 @default.
- W4382561906 cites W2987794620 @default.
- W4382561906 cites W3005566755 @default.
- W4382561906 cites W3085540460 @default.
- W4382561906 cites W3093715065 @default.
- W4382561906 cites W3094079221 @default.
- W4382561906 cites W3112010593 @default.
- W4382561906 cites W3190142829 @default.
- W4382561906 cites W4200227965 @default.
- W4382561906 cites W4320912494 @default.
- W4382561906 cites W4323322078 @default.
- W4382561906 doi "https://doi.org/10.1016/j.applthermaleng.2023.121069" @default.
- W4382561906 hasPublicationYear "2023" @default.
- W4382561906 type Work @default.
- W4382561906 citedByCount "0" @default.
- W4382561906 crossrefType "journal-article" @default.
- W4382561906 hasAuthorship W4382561906A5036535029 @default.
- W4382561906 hasAuthorship W4382561906A5037065480 @default.
- W4382561906 hasAuthorship W4382561906A5058564296 @default.
- W4382561906 hasAuthorship W4382561906A5062178633 @default.
- W4382561906 hasAuthorship W4382561906A5076378947 @default.
- W4382561906 hasBestOaLocation W43825619061 @default.
- W4382561906 hasConcept C10899652 @default.
- W4382561906 hasConcept C116915560 @default.
- W4382561906 hasConcept C119599485 @default.
- W4382561906 hasConcept C121332964 @default.
- W4382561906 hasConcept C127413603 @default.
- W4382561906 hasConcept C151662897 @default.
- W4382561906 hasConcept C154256306 @default.
- W4382561906 hasConcept C159985019 @default.
- W4382561906 hasConcept C178790620 @default.
- W4382561906 hasConcept C185592680 @default.
- W4382561906 hasConcept C191897082 @default.
- W4382561906 hasConcept C192562407 @default.
- W4382561906 hasConcept C204530211 @default.
- W4382561906 hasConcept C30403606 @default.
- W4382561906 hasConcept C41231900 @default.
- W4382561906 hasConcept C50517652 @default.
- W4382561906 hasConcept C541104983 @default.
- W4382561906 hasConcept C550372918 @default.
- W4382561906 hasConcept C55766333 @default.
- W4382561906 hasConcept C57879066 @default.
- W4382561906 hasConcept C97355855 @default.
- W4382561906 hasConceptScore W4382561906C10899652 @default.
- W4382561906 hasConceptScore W4382561906C116915560 @default.
- W4382561906 hasConceptScore W4382561906C119599485 @default.
- W4382561906 hasConceptScore W4382561906C121332964 @default.
- W4382561906 hasConceptScore W4382561906C127413603 @default.
- W4382561906 hasConceptScore W4382561906C151662897 @default.
- W4382561906 hasConceptScore W4382561906C154256306 @default.
- W4382561906 hasConceptScore W4382561906C159985019 @default.
- W4382561906 hasConceptScore W4382561906C178790620 @default.