Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382600376> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4382600376 endingPage "105212" @default.
- W4382600376 startingPage "105212" @default.
- W4382600376 abstract "Mild Cognitive Impairment (MCI) is an early stage of Alzheimer's Disease (AD), often mistaken for natural aging. Early detection and treatment of MCI are crucial for effective treatment, but the condition can be difficult to diagnose. In recent years, multi-modal data and deep learning methods have shown promise in this field. The objective of this study is to develop a computer-aided MCI diagnosis system that effectively processes multi-modal data using deep learning methods. We proposed a Dual Fusion Cluster Graph Convolution Network (DFCGCN) model, which combines two channels of feature extraction, one adjacency matrix, and the Cluster GCN in series. Brain imaging is downsampled using graph pooling and flattened into sparse vectors, from which advanced features are extracted. Similarity between connectivity matrices is calculated using the Gaussian kernel function and combined with non-imaging details to construct a population graph that better represents inter-subject variability. Finally, features are assigned to subjects in the population graph, and node embeddings are learned using Cluster GCN to output diagnostic results. We tested the proposed algorithm on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, achieving an accuracy, sensitivity, and specificity of 90.7%, 91.1%, and 94.0%, respectively. The DFCGCN model presented in this study enhances the diagnosis of MCI and outperforms other state-of-the-art algorithms. This approach has potential to be a valuable tool for early detection and treatment of MCI." @default.
- W4382600376 created "2023-06-30" @default.
- W4382600376 creator A5019858998 @default.
- W4382600376 creator A5063568458 @default.
- W4382600376 date "2023-09-01" @default.
- W4382600376 modified "2023-09-27" @default.
- W4382600376 title "Research on early diagnosis of Alzheimer's disease based on dual fusion cluster graph convolutional network" @default.
- W4382600376 cites W1965359844 @default.
- W4382600376 cites W2097117768 @default.
- W4382600376 cites W2160371232 @default.
- W4382600376 cites W2253429366 @default.
- W4382600376 cites W2583114732 @default.
- W4382600376 cites W2606546398 @default.
- W4382600376 cites W2779020697 @default.
- W4382600376 cites W2806489700 @default.
- W4382600376 cites W2899335103 @default.
- W4382600376 cites W2901480059 @default.
- W4382600376 cites W2911964244 @default.
- W4382600376 cites W2945827377 @default.
- W4382600376 cites W2963351448 @default.
- W4382600376 cites W2973153742 @default.
- W4382600376 cites W2993219936 @default.
- W4382600376 cites W3000118808 @default.
- W4382600376 cites W3004621388 @default.
- W4382600376 cites W3007878073 @default.
- W4382600376 cites W3084350364 @default.
- W4382600376 cites W3095479837 @default.
- W4382600376 cites W3116871539 @default.
- W4382600376 cites W3120007598 @default.
- W4382600376 cites W3197787446 @default.
- W4382600376 cites W4239510810 @default.
- W4382600376 cites W4282821492 @default.
- W4382600376 cites W4306319049 @default.
- W4382600376 doi "https://doi.org/10.1016/j.bspc.2023.105212" @default.
- W4382600376 hasPublicationYear "2023" @default.
- W4382600376 type Work @default.
- W4382600376 citedByCount "0" @default.
- W4382600376 crossrefType "journal-article" @default.
- W4382600376 hasAuthorship W4382600376A5019858998 @default.
- W4382600376 hasAuthorship W4382600376A5063568458 @default.
- W4382600376 hasBestOaLocation W43826003761 @default.
- W4382600376 hasConcept C108583219 @default.
- W4382600376 hasConcept C118552586 @default.
- W4382600376 hasConcept C132525143 @default.
- W4382600376 hasConcept C153180895 @default.
- W4382600376 hasConcept C154945302 @default.
- W4382600376 hasConcept C180356752 @default.
- W4382600376 hasConcept C2908647359 @default.
- W4382600376 hasConcept C41008148 @default.
- W4382600376 hasConcept C58693492 @default.
- W4382600376 hasConcept C70437156 @default.
- W4382600376 hasConcept C71924100 @default.
- W4382600376 hasConcept C80444323 @default.
- W4382600376 hasConcept C99454951 @default.
- W4382600376 hasConceptScore W4382600376C108583219 @default.
- W4382600376 hasConceptScore W4382600376C118552586 @default.
- W4382600376 hasConceptScore W4382600376C132525143 @default.
- W4382600376 hasConceptScore W4382600376C153180895 @default.
- W4382600376 hasConceptScore W4382600376C154945302 @default.
- W4382600376 hasConceptScore W4382600376C180356752 @default.
- W4382600376 hasConceptScore W4382600376C2908647359 @default.
- W4382600376 hasConceptScore W4382600376C41008148 @default.
- W4382600376 hasConceptScore W4382600376C58693492 @default.
- W4382600376 hasConceptScore W4382600376C70437156 @default.
- W4382600376 hasConceptScore W4382600376C71924100 @default.
- W4382600376 hasConceptScore W4382600376C80444323 @default.
- W4382600376 hasConceptScore W4382600376C99454951 @default.
- W4382600376 hasLocation W43826003761 @default.
- W4382600376 hasOpenAccess W4382600376 @default.
- W4382600376 hasPrimaryLocation W43826003761 @default.
- W4382600376 hasRelatedWork W2043075591 @default.
- W4382600376 hasRelatedWork W2059625476 @default.
- W4382600376 hasRelatedWork W2291847203 @default.
- W4382600376 hasRelatedWork W2517027266 @default.
- W4382600376 hasRelatedWork W2738221750 @default.
- W4382600376 hasRelatedWork W2943474764 @default.
- W4382600376 hasRelatedWork W2944724518 @default.
- W4382600376 hasRelatedWork W2964629181 @default.
- W4382600376 hasRelatedWork W3002526821 @default.
- W4382600376 hasRelatedWork W3173326738 @default.
- W4382600376 hasVolume "86" @default.
- W4382600376 isParatext "false" @default.
- W4382600376 isRetracted "false" @default.
- W4382600376 workType "article" @default.