Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382600989> ?p ?o ?g. }
- W4382600989 endingPage "121457" @default.
- W4382600989 startingPage "121457" @default.
- W4382600989 abstract "The purpose of this research is to study how the operating and structure parameter affect the dynamic, require power and electric consumption of electric assisted bicycle (EAB). The paper applied a combined an artificial neural network (ANN) with genetic algorithm (GA) method to predict the required power, electric consumption of EAB and find an effective performance area. The MATLAB-Simulink simulation model is established to create 1000 data point, that is applied in an ANN for training, testing and verifying. The ANN-GA method is applied to identify the optimized required power and electric consumption under four typical slope grades in the area of (0–0.65%), four typical wheel radius in the area of (0.3–0.0.39 m), four typical frontal areas in the range of (0.423–1.323 m2), four typical speed levels from speed level 1 to speed level 4. After the ANN is trained, it is applied into the genetic algorithm to identify the effective performance. The prediction results reflect the major physical mechanism that governs ES performance and are validated against the MATLAB-Simulink simulation model. Additionally, the electric assisted bicycle can reach an effective performance area at 27.16 km/h with the optimized required power of 545.5 W at slope grade of 0%, wheel radius of 0.39 m, speed level 4, frontal area of 0.423 m2. The results show that the ANN-GA method is suitable to identifying structure and operating parameters including various slope grades, frontal areas, wheel radius, speed level for optimizing effective performance of EAB, which contributes a helpful method for EAB design and control. Beside that, the experimental test was conducted on real road test at Taehwa river to verify the simulated results. The experiment results and simulation results have the same trend at the same conditions. (The short version of the paper was presented at ICAE2022, Bochum, Germany, Aug 8–11, 2022. This paper is a substantial extension of the short version of the conference paper.)" @default.
- W4382600989 created "2023-06-30" @default.
- W4382600989 creator A5064081798 @default.
- W4382600989 creator A5091497378 @default.
- W4382600989 date "2023-10-01" @default.
- W4382600989 modified "2023-10-15" @default.
- W4382600989 title "A deep learning approach for optimize dynamic and required power in electric assisted bicycle under a structure and operating parameters" @default.
- W4382600989 cites W2051264098 @default.
- W4382600989 cites W2152282361 @default.
- W4382600989 cites W2609819435 @default.
- W4382600989 cites W2754209466 @default.
- W4382600989 cites W2806660505 @default.
- W4382600989 cites W2905351498 @default.
- W4382600989 cites W2966262234 @default.
- W4382600989 cites W2995189134 @default.
- W4382600989 cites W3004659505 @default.
- W4382600989 cites W3014282671 @default.
- W4382600989 cites W3014728352 @default.
- W4382600989 cites W3041538752 @default.
- W4382600989 cites W3081676451 @default.
- W4382600989 cites W3081889057 @default.
- W4382600989 cites W3094704314 @default.
- W4382600989 cites W3096941239 @default.
- W4382600989 cites W3106570868 @default.
- W4382600989 cites W3108595798 @default.
- W4382600989 cites W3112756409 @default.
- W4382600989 cites W3113489746 @default.
- W4382600989 cites W3132638530 @default.
- W4382600989 cites W3133654122 @default.
- W4382600989 cites W3175588698 @default.
- W4382600989 cites W3196585862 @default.
- W4382600989 cites W3210193173 @default.
- W4382600989 cites W3214564341 @default.
- W4382600989 cites W4200351803 @default.
- W4382600989 cites W4206050043 @default.
- W4382600989 cites W4206643523 @default.
- W4382600989 cites W4214808176 @default.
- W4382600989 cites W4226254635 @default.
- W4382600989 cites W4281704735 @default.
- W4382600989 cites W4295765233 @default.
- W4382600989 cites W4296144034 @default.
- W4382600989 cites W4296343833 @default.
- W4382600989 cites W4311001965 @default.
- W4382600989 cites W4313341233 @default.
- W4382600989 cites W4313465994 @default.
- W4382600989 cites W4322505063 @default.
- W4382600989 cites W4323536590 @default.
- W4382600989 cites W4362676645 @default.
- W4382600989 cites W4362718207 @default.
- W4382600989 doi "https://doi.org/10.1016/j.apenergy.2023.121457" @default.
- W4382600989 hasPublicationYear "2023" @default.
- W4382600989 type Work @default.
- W4382600989 citedByCount "1" @default.
- W4382600989 countsByYear W43826009892023 @default.
- W4382600989 crossrefType "journal-article" @default.
- W4382600989 hasAuthorship W4382600989A5064081798 @default.
- W4382600989 hasAuthorship W4382600989A5091497378 @default.
- W4382600989 hasConcept C111919701 @default.
- W4382600989 hasConcept C119857082 @default.
- W4382600989 hasConcept C121332964 @default.
- W4382600989 hasConcept C127413603 @default.
- W4382600989 hasConcept C146978453 @default.
- W4382600989 hasConcept C154945302 @default.
- W4382600989 hasConcept C163258240 @default.
- W4382600989 hasConcept C171146098 @default.
- W4382600989 hasConcept C178635117 @default.
- W4382600989 hasConcept C204323151 @default.
- W4382600989 hasConcept C2775924081 @default.
- W4382600989 hasConcept C2780365114 @default.
- W4382600989 hasConcept C38652104 @default.
- W4382600989 hasConcept C40293303 @default.
- W4382600989 hasConcept C41008148 @default.
- W4382600989 hasConcept C44154836 @default.
- W4382600989 hasConcept C47446073 @default.
- W4382600989 hasConcept C50644808 @default.
- W4382600989 hasConcept C62520636 @default.
- W4382600989 hasConcept C8880873 @default.
- W4382600989 hasConceptScore W4382600989C111919701 @default.
- W4382600989 hasConceptScore W4382600989C119857082 @default.
- W4382600989 hasConceptScore W4382600989C121332964 @default.
- W4382600989 hasConceptScore W4382600989C127413603 @default.
- W4382600989 hasConceptScore W4382600989C146978453 @default.
- W4382600989 hasConceptScore W4382600989C154945302 @default.
- W4382600989 hasConceptScore W4382600989C163258240 @default.
- W4382600989 hasConceptScore W4382600989C171146098 @default.
- W4382600989 hasConceptScore W4382600989C178635117 @default.
- W4382600989 hasConceptScore W4382600989C204323151 @default.
- W4382600989 hasConceptScore W4382600989C2775924081 @default.
- W4382600989 hasConceptScore W4382600989C2780365114 @default.
- W4382600989 hasConceptScore W4382600989C38652104 @default.
- W4382600989 hasConceptScore W4382600989C40293303 @default.
- W4382600989 hasConceptScore W4382600989C41008148 @default.
- W4382600989 hasConceptScore W4382600989C44154836 @default.
- W4382600989 hasConceptScore W4382600989C47446073 @default.
- W4382600989 hasConceptScore W4382600989C50644808 @default.
- W4382600989 hasConceptScore W4382600989C62520636 @default.
- W4382600989 hasConceptScore W4382600989C8880873 @default.
- W4382600989 hasFunder F4320321408 @default.