Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382602589> ?p ?o ?g. }
- W4382602589 endingPage "116584" @default.
- W4382602589 startingPage "116584" @default.
- W4382602589 abstract "Visible-to-near-infrared (vis–NIR) and mid-infrared (MIR) spectroscopy have been widely utilized for the quantitative estimation of soil organic carbon (SOC). The fusion of vis–NIR and MIR data can be hypothesized to provide accurate and reliable prediction for SOC because spectral data within a specific range of each individual sensor may lack important absorptive features associated with SOC. In this study, six data fusion strategies, principally direct concatenation-partial least squares regression (DC-PLSR), outer product analysis-PLSR (OPA-PLSR), OPA-competitive adaptive reweighted sampling-PLSR (OPA-CARS-PLSR), sequentially orthogonalized-PLSR (SO-PLSR), DC-convolutional neural network (DC-CNN), and parallel input-CNN (PI-CNN), were compared for the spectral estimations of SOC. The data fusion and individual sensor models were developed using soil samples collected from Zhejiang Province, East China, and scanned under laboratory conditions with both vis–NIR and MIR spectrophotometers. The validation results of vis–NIR (validation coefficient of determination [R2] = 0.63–0.73) were generally better than those of MIR (validation R2 = 0.45–0.59). For data fusion, the best validation accuracy was achieved by the PI-CNN (validation R2 = 0.84), followed in descending order by DC-CNN (validation R2 = 0.78), SO-PLSR (validation R2 = 0.73), OPA-CARS-PLSR (validation R2 = 0.69), OPA-PLSR (validation R2 = 0.66), and DC-PLSR (validation R2 = 0.64). The better performance of PI-CNN over DC-CNN demonstrates the necessity of using different sizes of convolutional kernels before feeding into the fully connected layers in the CNN network for fusing vis–NIR and MIR spectral data. The deep-learning fusion method based on PI-CNN can be considered an efficient tool for integrating data from multiple sensors for estimating soil properties in the field of soil spectral modeling." @default.
- W4382602589 created "2023-06-30" @default.
- W4382602589 creator A5000785769 @default.
- W4382602589 creator A5010740814 @default.
- W4382602589 creator A5016449371 @default.
- W4382602589 creator A5038623685 @default.
- W4382602589 creator A5038986917 @default.
- W4382602589 creator A5042623155 @default.
- W4382602589 creator A5080056117 @default.
- W4382602589 creator A5084017348 @default.
- W4382602589 creator A5086938179 @default.
- W4382602589 creator A5089753073 @default.
- W4382602589 creator A5091755587 @default.
- W4382602589 creator A5092362661 @default.
- W4382602589 date "2023-09-01" @default.
- W4382602589 modified "2023-10-17" @default.
- W4382602589 title "Spectral fusion modeling for soil organic carbon by a parallel input-convolutional neural network" @default.
- W4382602589 cites W1963876849 @default.
- W4382602589 cites W1973273412 @default.
- W4382602589 cites W1990592505 @default.
- W4382602589 cites W1997207432 @default.
- W4382602589 cites W1997270149 @default.
- W4382602589 cites W2001804870 @default.
- W4382602589 cites W2007214014 @default.
- W4382602589 cites W2037752115 @default.
- W4382602589 cites W2052294148 @default.
- W4382602589 cites W2071188448 @default.
- W4382602589 cites W2073503722 @default.
- W4382602589 cites W2086664186 @default.
- W4382602589 cites W2098722265 @default.
- W4382602589 cites W2109606373 @default.
- W4382602589 cites W2110799084 @default.
- W4382602589 cites W2112298302 @default.
- W4382602589 cites W2115823300 @default.
- W4382602589 cites W2275931631 @default.
- W4382602589 cites W2384602607 @default.
- W4382602589 cites W2556156368 @default.
- W4382602589 cites W2579486704 @default.
- W4382602589 cites W2800522346 @default.
- W4382602589 cites W2883273084 @default.
- W4382602589 cites W2883893555 @default.
- W4382602589 cites W2885633929 @default.
- W4382602589 cites W2898280516 @default.
- W4382602589 cites W2898605516 @default.
- W4382602589 cites W2898962279 @default.
- W4382602589 cites W2901164490 @default.
- W4382602589 cites W2914390555 @default.
- W4382602589 cites W2951230751 @default.
- W4382602589 cites W2969259866 @default.
- W4382602589 cites W3002209846 @default.
- W4382602589 cites W3003919802 @default.
- W4382602589 cites W3004916583 @default.
- W4382602589 cites W3004994287 @default.
- W4382602589 cites W3010310735 @default.
- W4382602589 cites W3051460665 @default.
- W4382602589 cites W3093446480 @default.
- W4382602589 cites W3106889193 @default.
- W4382602589 cites W3112319399 @default.
- W4382602589 cites W3130951558 @default.
- W4382602589 cites W3134039950 @default.
- W4382602589 cites W3142750162 @default.
- W4382602589 cites W3153519846 @default.
- W4382602589 cites W3157113682 @default.
- W4382602589 cites W3163989235 @default.
- W4382602589 cites W3169302977 @default.
- W4382602589 cites W3200249007 @default.
- W4382602589 cites W3202071721 @default.
- W4382602589 cites W3215367274 @default.
- W4382602589 cites W4200169374 @default.
- W4382602589 cites W4205966472 @default.
- W4382602589 cites W4210763428 @default.
- W4382602589 cites W4214618925 @default.
- W4382602589 cites W4224536765 @default.
- W4382602589 cites W4281849801 @default.
- W4382602589 cites W4283821445 @default.
- W4382602589 cites W4284884498 @default.
- W4382602589 doi "https://doi.org/10.1016/j.geoderma.2023.116584" @default.
- W4382602589 hasPublicationYear "2023" @default.
- W4382602589 type Work @default.
- W4382602589 citedByCount "0" @default.
- W4382602589 crossrefType "journal-article" @default.
- W4382602589 hasAuthorship W4382602589A5000785769 @default.
- W4382602589 hasAuthorship W4382602589A5010740814 @default.
- W4382602589 hasAuthorship W4382602589A5016449371 @default.
- W4382602589 hasAuthorship W4382602589A5038623685 @default.
- W4382602589 hasAuthorship W4382602589A5038986917 @default.
- W4382602589 hasAuthorship W4382602589A5042623155 @default.
- W4382602589 hasAuthorship W4382602589A5080056117 @default.
- W4382602589 hasAuthorship W4382602589A5084017348 @default.
- W4382602589 hasAuthorship W4382602589A5086938179 @default.
- W4382602589 hasAuthorship W4382602589A5089753073 @default.
- W4382602589 hasAuthorship W4382602589A5091755587 @default.
- W4382602589 hasAuthorship W4382602589A5092362661 @default.
- W4382602589 hasBestOaLocation W43826025891 @default.
- W4382602589 hasConcept C105795698 @default.
- W4382602589 hasConcept C114614502 @default.
- W4382602589 hasConcept C121332964 @default.
- W4382602589 hasConcept C127313418 @default.